\frac{dx_{1}}{dt} = \left(1 \cdot k_{14} \cdot \left(k_{1} \cdot x_{2} + k_{3} \cdot x_{1} \cdot x_{3} / \left(k_{4} + x_{3}\right) + k_{5}\right) + -1 \cdot k_{14} \cdot k_{2} \cdot x_{1}\right) / k_{14}\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{14} \cdot k_{6} \cdot x_{2} \cdot \left(1 - k_{7} \cdot x_{2}\right) + -1 \cdot k_{14} \cdot k_{8} \cdot x_{1} \cdot x_{2} / \left(k_{9} + x_{2}\right)\right) / k_{14}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{14} \cdot \left(k_{10} \cdot x_{1} \cdot x_{2} / \left(k_{11} + x_{2}\right) + k_{13}\right) + -1 \cdot k_{14} \cdot k_{12} \cdot x_{3}\right) / k_{14}