\frac{dx_{1}}{dt} = \left(1 \cdot k_{16} \cdot k_{3} + 1 \cdot k_{16} \cdot k_{9} \cdot x_{2} + -1 \cdot \left(k_{6} \cdot x_{1} \cdot x_{6} / \left(1 + k_{1} \cdot x_{6}\right) + k_{7} \cdot x_{1} \cdot \left(x_{4} + x_{3}\right) / \left(1 + k_{2} \cdot \left(x_{4} + x_{3}\right)\right)\right) + -1 \cdot k_{16} \cdot k_{4} \cdot x_{1}\right) / k_{16}\\ \frac{dx_{2}}{dt} = \left(-1 \cdot k_{16} \cdot k_{9} \cdot x_{2} + 1 \cdot \left(k_{6} \cdot x_{1} \cdot x_{6} / \left(1 + k_{1} \cdot x_{6}\right) + k_{7} \cdot x_{1} \cdot \left(x_{4} + x_{3}\right) / \left(1 + k_{2} \cdot \left(x_{4} + x_{3}\right)\right)\right) + -1 \cdot k_{16} \cdot k_{4} \cdot x_{2} + -1 \cdot k_{16} \cdot k_{8} \cdot k_{10} \cdot x_{2} + -1 \cdot k_{16} \cdot \left(1 - k_{8}\right) \cdot k_{10} \cdot x_{2}\right) / k_{16}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{16} \cdot k_{8} \cdot k_{10} \cdot x_{2} + -1 \cdot k_{16} \cdot \left(k_{4} + k_{11}\right) \cdot x_{3} + -1 \cdot k_{16} \cdot k_{12} \cdot x_{3}\right) / k_{16}\\ \frac{dx_{4}}{dt} = \left(1 \cdot k_{16} \cdot \left(1 - k_{8}\right) \cdot k_{10} \cdot x_{2} + -1 \cdot k_{16} \cdot \left(k_{4} + k_{11}\right) \cdot x_{4} + -1 \cdot k_{16} \cdot k_{13} \cdot x_{4}\right) / k_{16}\\ \frac{dx_{5}}{dt} = \left(1 \cdot k_{16} \cdot k_{12} \cdot x_{3} + 1 \cdot k_{16} \cdot k_{13} \cdot x_{4} + -1 \cdot k_{16} \cdot k_{4} \cdot x_{5}\right) / k_{16}\\ \frac{dx_{6}}{dt} = \left(1 \cdot \left(k_{15} \cdot x_{4} + k_{14} \cdot x_{3}\right) + -1 \cdot k_{17} \cdot k_{5} \cdot x_{6}\right) / k_{17}