\frac{dx_{1}}{dt} = 0\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{3} \cdot k_{4} \cdot k_{16} + -1 \cdot k_{3} \cdot k_{7} \cdot x_{2} + -2 \cdot k_{3} \cdot \left(k_{8} \cdot x_{2}^{2} - k_{9} \cdot x_{5}\right) + -1 \cdot k_{3} \cdot \left(k_{12} \cdot x_{2} \cdot x_{4} - k_{13} \cdot x_{7}\right)\right) / k_{3}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{3} \cdot k_{5} \cdot x_{7} + -1 \cdot k_{3} \cdot k_{6} \cdot x_{3}\right) / k_{3}\\ \frac{dx_{4}}{dt} = \left(1 \cdot k_{3} \cdot k_{5} \cdot x_{7} + 1 \cdot k_{3} \cdot k_{11} \cdot x_{6} + -1 \cdot k_{3} \cdot \left(k_{12} \cdot x_{2} \cdot x_{4} - k_{13} \cdot x_{7}\right) + -1 \cdot k_{3} \cdot \left(k_{14} \cdot x_{5} \cdot x_{4} - k_{15} \cdot x_{6}\right)\right) / k_{3}\\ \frac{dx_{5}}{dt} = \left(1 \cdot k_{3} \cdot \left(k_{8} \cdot x_{2}^{2} - k_{9} \cdot x_{5}\right) + -1 \cdot k_{3} \cdot k_{10} \cdot x_{5} + -1 \cdot k_{3} \cdot \left(k_{14} \cdot x_{5} \cdot x_{4} - k_{15} \cdot x_{6}\right)\right) / k_{3}\\ \frac{dx_{6}}{dt} = \left(-1 \cdot k_{3} \cdot k_{11} \cdot x_{6} + 1 \cdot k_{3} \cdot \left(k_{14} \cdot x_{5} \cdot x_{4} - k_{15} \cdot x_{6}\right)\right) / k_{3}\\ \frac{dx_{7}}{dt} = \left(-1 \cdot k_{3} \cdot k_{5} \cdot x_{7} + 1 \cdot k_{3} \cdot \left(k_{12} \cdot x_{2} \cdot x_{4} - k_{13} \cdot x_{7}\right)\right) / k_{3}