\frac{dx_{1}}{dt} = \left(1 \cdot k_{11} \cdot k_{1} / \left(1 + k_{3} \cdot \left(x_{1} + x_{2} + x_{3}\right)\right) \cdot \left(x_{1} + x_{2} + k_{7}\right) / \left(x_{1} + x_{2} + k_{7} + k_{8} \cdot x_{3}\right) \cdot x_{1} + -1 \cdot k_{11} \cdot k_{5} \cdot x_{1}\right) / k_{11}\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{11} \cdot k_{2} / \left(1 + k_{4} \cdot \left(x_{1} + x_{2} + x_{3}\right)\right) \cdot \left(x_{1} + x_{2} + k_{7}\right) / \left(x_{1} + x_{2} + k_{7} + k_{9} \cdot x_{3}\right) \cdot x_{2} + -1 \cdot k_{11} \cdot k_{6} \cdot x_{2}\right) / k_{11}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{11} \cdot k_{1} / \left(1 + k_{3} \cdot \left(x_{1} + x_{2} + x_{3}\right)\right) \cdot \left(1 - k_{10} \cdot \left(x_{1} + x_{2}\right) / \left(x_{3} + k_{7} + k_{10} \cdot \left(x_{1} + x_{2}\right)\right)\right) \cdot x_{3} + -1 \cdot k_{11} \cdot k_{5} \cdot x_{3}\right) / k_{11}