\frac{dx_{1}}{dt} = \left(1 \cdot k_{16} \cdot k_{1} \cdot x_{1} \cdot \left(1 - \left(x_{1} + x_{2}\right) / k_{2}\right) + -1 \cdot k_{16} \cdot k_{3} \cdot x_{5} \cdot x_{1} / \left(k_{5} + x_{1}\right) + -1 \cdot k_{16} \cdot k_{4} \cdot x_{1} \cdot x_{4} / \left(k_{6} + x_{4}\right)\right) / k_{16}\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{16} \cdot k_{3} \cdot x_{5} \cdot x_{1} / \left(k_{5} + x_{1}\right) + -1 \cdot k_{16} \cdot k_{8} \cdot x_{2} + -1 \cdot k_{16} \cdot k_{4} \cdot x_{2} \cdot x_{4} / \left(k_{6} + x_{4}\right)\right) / k_{16}\\ \frac{dx_{3}}{dt} = 1 \cdot k_{16} \cdot k_{9} \cdot x_{5} \cdot x_{3} \cdot \left(1 - x_{3} / k_{10}\right) / \left(k_{7} + x_{5}\right) / k_{16}\\ \frac{dx_{4}}{dt} = \left(1 \cdot k_{16} \cdot k_{11} \cdot x_{3} \cdot \left(x_{1} + x_{5}\right) / \left(x_{1} + x_{5} + k_{7}\right) + -1 \cdot k_{16} \cdot k_{12} \cdot x_{4} + -1 \cdot k_{16} \cdot k_{13} \cdot x_{1} \cdot x_{4}\right) / k_{16}\\ \frac{dx_{5}}{dt} = \left(1 \cdot k_{16} \cdot k_{8} \cdot k_{15} \cdot x_{2} + -1 \cdot k_{16} \cdot k_{14} \cdot x_{5}\right) / k_{16}