\frac{dx_{36}}{dt} = 0 / k_{68}\\ \frac{dx_{37}}{dt} = 0 / k_{68}\\ \frac{dx_{38}}{dt} = 0 / k_{68}\\ \frac{dx_{39}}{dt} = 0 / k_{68}\\ \frac{dx_{40}}{dt} = 0 / k_{68}\\ \frac{dx_{41}}{dt} = 0 / k_{68}\\ \frac{dx_{42}}{dt} = 0 / k_{68}\\ \frac{dx_{43}}{dt} = 0 / k_{68}\\ \frac{dx_{1}}{dt} = k_{1} \cdot x_{4} \cdot x_{3} - k_{2} \cdot x_{25} + k_{3} \cdot x_{2} \cdot x_{32} + k_{4} \cdot x_{2} \cdot x_{30} - k_{42} \cdot x_{25} \cdot x_{22} - k_{43} \cdot x_{26} \cdot x_{21}\\ \frac{dx_{2}}{dt} = k_{1} \cdot x_{5} \cdot x_{3} - k_{2} \cdot x_{2} - k_{3} \cdot x_{2} \cdot x_{32} - k_{4} \cdot x_{2} \cdot x_{30}\\ \frac{dx_{3}}{dt} = \left(-\left(k_{1} \cdot x_{4} \cdot x_{3} - k_{2} \cdot x_{25}\right)\right) - \left(k_{1} \cdot x_{5} \cdot x_{3} - k_{2} \cdot x_{2}\right)\\ \frac{dx_{4}}{dt} = \left(-\left(k_{1} \cdot x_{4} \cdot x_{3} - k_{2} \cdot x_{25}\right)\right) + k_{3} \cdot x_{5} \cdot x_{32}\\ \frac{dx_{5}}{dt} = \left(-\left(k_{1} \cdot x_{5} \cdot x_{3} - k_{2} \cdot x_{2}\right)\right) - k_{3} \cdot x_{5} \cdot x_{32}\\ \frac{dx_{6}}{dt} = k_{5} / k_{6} \cdot x_{7} \cdot x_{25} + k_{7} \cdot x_{7} \cdot x_{18} / \left(k_{8} + x_{7}\right) - k_{44} \cdot x_{22} \cdot x_{6}\\ \frac{dx_{7}}{dt} = \left(-k_{5} / k_{6}\right) \cdot x_{7} \cdot x_{25} - k_{7} \cdot x_{7} \cdot x_{18} / \left(k_{8} + x_{7}\right)\\ \frac{dx_{8}}{dt} = k_{9} / k_{10} \cdot x_{9} \cdot x_{25} + k_{11} \cdot x_{27} \cdot x_{31} / \left(x_{43} \cdot k_{12}\right) + k_{13} \cdot x_{27} \cdot x_{28} \cdot x_{31} / \left(x_{43}^{2} \cdot k_{15} \cdot k_{13}\right) - \left(k_{17} \cdot x_{30} \cdot x_{21} - k_{18} \cdot x_{22}\right) - \left(k_{45} \cdot x_{20} + k_{46} \cdot x_{36} + k_{47} \cdot x_{37} + k_{48} \cdot x_{40}\right) \cdot x_{30} - k_{49} \cdot x_{20} \cdot x_{29}\\ \frac{dx_{9}}{dt} = \left(-k_{9} / k_{10}\right) \cdot x_{9} \cdot x_{25} - k_{11} \cdot x_{27} \cdot x_{31} / \left(x_{43} \cdot k_{12}\right) - k_{13} \cdot x_{27} \cdot x_{28} \cdot x_{31} / \left(x_{43}^{2} \cdot k_{15} \cdot k_{13}\right)\\ \frac{dx_{10}}{dt} = k_{19} \cdot x_{43} \cdot x_{30} \cdot x_{11} + k_{20} \cdot x_{29} \cdot x_{33} / x_{43} - \left(k_{50} \cdot x_{20} + k_{51} \cdot x_{36} + k_{52} \cdot x_{37} + k_{53} \cdot x_{40} + k_{54} \cdot x_{39}\right) \cdot x_{32}\\ \frac{dx_{11}}{dt} = \left(-k_{19}\right) \cdot x_{43} \cdot x_{30} \cdot x_{11} - k_{20} \cdot x_{29} \cdot x_{33} / x_{43}\\ \frac{dx_{12}}{dt} = k_{21} / k_{22} \cdot x_{13} \cdot x_{32}\\ \frac{dx_{13}}{dt} = \left(-k_{21} / k_{22}\right) \cdot x_{13} \cdot x_{32}\\ \frac{dx_{14}}{dt} = k_{23} \cdot x_{15} \cdot x_{32} / \left(k_{24} + x_{32}\right) - k_{55} \cdot x_{14}\\ \frac{dx_{15}}{dt} = \left(-k_{23}\right) \cdot x_{15} \cdot x_{32} / \left(k_{24} + x_{32}\right)\\ \frac{dx_{16}}{dt} = k_{25} \cdot x_{17} \cdot x_{32} / \left(k_{26} + x_{32}\right) - k_{56} \cdot x_{23} \cdot x_{35}\\ \frac{dx_{17}}{dt} = \left(-k_{25}\right) \cdot x_{17} \cdot x_{32} / \left(k_{26} + x_{32}\right)\\ \frac{dx_{18}}{dt} = k_{27} \cdot x_{43} \cdot x_{19} \cdot x_{32} - \left(k_{57} \cdot x_{20} + k_{58} \cdot x_{38} + k_{59} \cdot x_{37} + k_{60} \cdot x_{40} + k_{61} \cdot x_{41}\right) \cdot x_{18}\\ \frac{dx_{19}}{dt} = \left(-k_{27}\right) \cdot x_{43} \cdot x_{19} \cdot x_{32}\\ \frac{dx_{20}}{dt} = \left(-\left(k_{44} \cdot x_{6} + k_{45} \cdot x_{30} + k_{49} \cdot x_{29} + k_{50} \cdot x_{32} + k_{57} \cdot x_{18}\right)\right) \cdot x_{20}\\ \frac{dx_{21}}{dt} = \left(-\left(k_{17} \cdot x_{30} \cdot x_{21} - k_{18} \cdot x_{22}\right)\right) - k_{43} \cdot x_{26} \cdot x_{21}\\ \frac{dx_{22}}{dt} = k_{17} \cdot x_{30} \cdot x_{21} - k_{18} \cdot x_{22} - k_{42} \cdot x_{25} \cdot x_{22}\\ \frac{dx_{23}}{dt} = k_{28} \cdot x_{24} \cdot x_{32} - \left(k_{62} \cdot x_{36} + k_{63} \cdot x_{38} + k_{64} \cdot x_{37} + k_{65} \cdot x_{40}\right) \cdot x_{23}\\ \frac{dx_{24}}{dt} = \left(-k_{28}\right) \cdot x_{24} \cdot x_{32}