\frac{dx_{1}}{dt} = \left(1 \cdot k_{14} \cdot k_{1} \cdot x_{1} \cdot \left(1 - x_{1} / k_{2}\right) + -1 \cdot k_{14} \cdot k_{3} \cdot x_{1} \cdot x_{2}\right) / k_{14}\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{14} \cdot k_{3} \cdot x_{1} \cdot x_{2} + -1 \cdot k_{14} \cdot k_{4} \cdot x_{2} + -1 \cdot k_{14} \cdot k_{5} \cdot x_{2}\right) / k_{14}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{13} \cdot k_{6} + -1 \cdot k_{7} \cdot x_{2} \cdot x_{3} + -1 \cdot k_{13} \cdot k_{8} \cdot x_{3}\right) / k_{13}\\ \frac{dx_{4}}{dt} = \left(1 \cdot k_{7} \cdot x_{2} \cdot x_{3} + -1 \cdot k_{13} \cdot k_{8} \cdot x_{4} + -1 \cdot k_{13} \cdot k_{10} \cdot x_{4} + -1 \cdot k_{13} \cdot k_{9} \cdot x_{4}\right) / k_{13}\\ \frac{dx_{5}}{dt} = \left(1 \cdot k_{13} \cdot k_{9} \cdot x_{4} + -1 \cdot k_{13} \cdot k_{8} \cdot x_{5}\right) / k_{13}