\frac{dx_{1}}{dt} = \left(1 \cdot k_{1} \cdot \left(k_{2} \cdot k_{89} \cdot x_{2} - k_{3} \cdot x_{1}\right) + -1 \cdot k_{1} \cdot k_{36} \cdot x_{1}\right) / k_{1}\\ \frac{dx_{2}}{dt} = \left(-1 \cdot k_{1} \cdot \left(k_{2} \cdot k_{89} \cdot x_{2} - k_{3} \cdot x_{1}\right) + 1 \cdot k_{1} \cdot k_{46} + -1 \cdot k_{1} \cdot k_{47} \cdot x_{2}\right) / k_{1}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{1} \cdot k_{4} \cdot x_{1} \cdot x_{4} / \left(k_{5} + x_{4}\right) + -1 \cdot k_{1} \cdot k_{25} \cdot x_{13} \cdot x_{3} / \left(k_{26} + x_{3}\right) + -1 \cdot k_{1} \cdot k_{77} \cdot x_{11} \cdot x_{3} / \left(k_{78} + x_{3}\right)\right) / k_{1}\\ \frac{dx_{4}}{dt} = \left(-1 \cdot k_{1} \cdot k_{4} \cdot x_{1} \cdot x_{4} / \left(k_{5} + x_{4}\right) + 1 \cdot k_{1} \cdot k_{25} \cdot x_{13} \cdot x_{3} / \left(k_{26} + x_{3}\right) + 1 \cdot k_{1} \cdot k_{77} \cdot x_{11} \cdot x_{3} / \left(k_{78} + x_{3}\right)\right) / k_{1}\\ \frac{dx_{5}}{dt} = \left(1 \cdot k_{1} \cdot k_{6} \cdot x_{3} \cdot x_{6} / \left(k_{7} + x_{6}\right) + -1 \cdot k_{1} \cdot k_{8} \cdot k_{92} \cdot x_{5} / \left(k_{9} + x_{5}\right)\right) / k_{1}\\ \frac{dx_{6}}{dt} = \left(-1 \cdot k_{1} \cdot k_{6} \cdot x_{3} \cdot x_{6} / \left(k_{7} + x_{6}\right) + 1 \cdot k_{1} \cdot k_{8} \cdot k_{92} \cdot x_{5} / \left(k_{9} + x_{5}\right)\right) / k_{1}\\ \frac{dx_{7}}{dt} = \left(1 \cdot k_{1} \cdot k_{10} \cdot x_{5} \cdot x_{8} / \left(k_{11} + x_{8}\right) + -1 \cdot k_{1} \cdot k_{12} \cdot k_{91} \cdot x_{7} / \left(k_{13} + x_{7}\right) + -1 \cdot k_{1} \cdot k_{34} \cdot x_{17} \cdot x_{7} / \left(k_{35} + x_{7}\right)\right) / k_{1}\\ \frac{dx_{8}}{dt} = \left(-1 \cdot k_{1} \cdot k_{10} \cdot x_{5} \cdot x_{8} / \left(k_{11} + x_{8}\right) + 1 \cdot k_{1} \cdot k_{12} \cdot k_{91} \cdot x_{7} / \left(k_{13} + x_{7}\right) + 1 \cdot k_{1} \cdot k_{34} \cdot x_{17} \cdot x_{7} / \left(k_{35} + x_{7}\right)\right) / k_{1}\\ \frac{dx_{9}}{dt} = \left(1 \cdot k_{1} \cdot k_{14} \cdot x_{7} \cdot x_{10} / \left(k_{15} + x_{10}\right) + -1 \cdot k_{1} \cdot k_{16} \cdot k_{90} \cdot x_{9} / \left(k_{17} + x_{9}\right) + 1 \cdot k_{1} \cdot k_{44} \cdot x_{45} \cdot x_{10} / \left(k_{45} + x_{10}\right)\right) / k_{1}\\ \frac{dx_{10}}{dt} = \left(-1 \cdot k_{1} \cdot k_{14} \cdot x_{7} \cdot x_{10} / \left(k_{15} + x_{10}\right) + 1 \cdot k_{1} \cdot k_{16} \cdot k_{90} \cdot x_{9} / \left(k_{17} + x_{9}\right) + -1 \cdot k_{1} \cdot k_{44} \cdot x_{45} \cdot x_{10} / \left(k_{45} + x_{10}\right)\right) / k_{1}\\ \frac{dx_{11}}{dt} = \left(1 \cdot k_{1} \cdot k_{18} \cdot x_{9} \cdot x_{12} / \left(k_{19} + x_{12}\right) + -1 \cdot k_{1} \cdot k_{20} \cdot k_{90} \cdot x_{11} / \left(k_{21} + x_{11}\right) + -1 \cdot k_{1} \cdot k_{75} \cdot x_{7} \cdot x_{11} / \left(k_{76} + x_{11}\right)\right) / k_{1}\\ \frac{dx_{12}}{dt} = \left(-1 \cdot k_{1} \cdot k_{18} \cdot x_{9} \cdot x_{12} / \left(k_{19} + x_{12}\right) + 1 \cdot k_{1} \cdot k_{20} \cdot k_{90} \cdot x_{11} / \left(k_{21} + x_{11}\right) + 1 \cdot k_{1} \cdot k_{75} \cdot x_{7} \cdot x_{11} / \left(k_{76} + x_{11}\right)\right) / k_{1}\\ \frac{dx_{13}}{dt} = \left(1 \cdot k_{1} \cdot k_{22} \cdot x_{11} \cdot x_{14} / \left(k_{23} + x_{14}\right) + -1 \cdot k_{1} \cdot k_{24} \cdot x_{13}\right) / k_{1}\\ \frac{dx_{14}}{dt} = \left(-1 \cdot k_{1} \cdot k_{22} \cdot x_{11} \cdot x_{14} / \left(k_{23} + x_{14}\right) + 1 \cdot k_{1} \cdot k_{24} \cdot x_{13}\right) / k_{1}\\ \frac{dx_{15}}{dt} = \left(1 \cdot k_{1} \cdot k_{27} \cdot x_{1} \cdot x_{16} / \left(k_{28} + x_{16}\right) + 1 \cdot k_{1} \cdot k_{29} \cdot x_{5} \cdot x_{16} / \left(k_{30} + x_{16}\right) + -1 \cdot k_{1} \cdot k_{31} \cdot x_{15} + 1 \cdot k_{1} \cdot k_{54} \cdot x_{32} \cdot x_{16} / \left(k_{55} + x_{16}\right)\right) / k_{1}\\ \frac{dx_{16}}{dt} = \left(-1 \cdot k_{1} \cdot k_{27} \cdot x_{1} \cdot x_{16} / \left(k_{28} + x_{16}\right) + -1 \cdot k_{1} \cdot k_{29} \cdot x_{5} \cdot x_{16} / \left(k_{30} + x_{16}\right) + 1 \cdot k_{1} \cdot k_{31} \cdot x_{15} + -1 \cdot k_{1} \cdot k_{54} \cdot x_{32} \cdot x_{16} / \left(k_{55} + x_{16}\right)\right) / k_{1}\\ \frac{dx_{17}}{dt} = \left(1 \cdot k_{1} \cdot k_{32} \cdot x_{15} \cdot x_{18} / \left(k_{33} + x_{18}\right) + 1 \cdot k_{1} \cdot k_{52} \cdot x_{29} \cdot x_{18} / \left(k_{53} + x_{18}\right) + 1 \cdot k_{1} \cdot k_{61} \cdot x_{35} \cdot x_{18} / \left(k_{62} + x_{18}\right) + 1 \cdot k_{1} \cdot k_{63} \cdot k_{96} \cdot x_{18} / \left(k_{64} + x_{18}\right) + -1 \cdot k_{1} \cdot k_{65} \cdot k_{97} \cdot x_{17} / \left(k_{66} + x_{17}\right) + 1 \cdot k_{1} \cdot k_{67} \cdot k_{98} \cdot x_{18} / \left(k_{68} + x_{18}\right) + 1 \cdot k_{1} \cdot k_{69} \cdot k_{99} \cdot x_{18} / \left(k_{70} + x_{18}\right) + -1 \cdot k_{1} \cdot k_{71} \cdot k_{100} \cdot x_{17} / \left(k_{72} + x_{17}\right) + -1 \cdot k_{1} \cdot k_{73} \cdot k_{90} \cdot x_{17} / \left(k_{74} + x_{17}\right)\right) / k_{1}\\ \frac{dx_{18}}{dt} = \left(-1 \cdot k_{1} \cdot k_{32} \cdot x_{15} \cdot x_{18} / \left(k_{33} + x_{18}\right) + -1 \cdot k_{1} \cdot k_{52} \cdot x_{29} \cdot x_{18} / \left(k_{53} + x_{18}\right) + -1 \cdot k_{1} \cdot k_{61} \cdot x_{35} \cdot x_{18} / \left(k_{62} + x_{18}\right) + -1 \cdot k_{1} \cdot k_{63} \cdot k_{96} \cdot x_{18} / \left(k_{64} + x_{18}\right) + 1 \cdot k_{1} \cdot k_{65} \cdot k_{97} \cdot x_{17} / \left(k_{66} + x_{17}\right) + -1 \cdot k_{1} \cdot k_{67} \cdot k_{98} \cdot x_{18} / \left(k_{68} + x_{18}\right) + -1 \cdot k_{1} \cdot k_{69} \cdot k_{99} \cdot x_{18} / \left(k_{70} + x_{18}\right) + 1 \cdot k_{1} \cdot k_{71} \cdot k_{100} \cdot x_{17} / \left(k_{72} + x_{17}\right) + 1 \cdot k_{1} \cdot k_{73} \cdot k_{90} \cdot x_{17} / \left(k_{74} + x_{17}\right)\right) / k_{1}\\ \frac{dx_{19}}{dt} = \left(1 \cdot k_{1} \cdot k_{37} \cdot x_{1} \cdot x_{20} / \left(k_{38} + x_{20}\right) + -1 \cdot k_{1} \cdot k_{39} \cdot x_{19}\right) / k_{1}\\ \frac{dx_{20}}{dt} = \left(-1 \cdot k_{1} \cdot k_{37} \cdot x_{1} \cdot x_{20} / \left(k_{38} + x_{20}\right) + 1 \cdot k_{1} \cdot k_{39} \cdot x_{19}\right) / k_{1}\\ \frac{dx_{21}}{dt} = \left(1 \cdot k_{1} \cdot k_{40} \cdot x_{19} \cdot x_{22} / \left(k_{41} + x_{22}\right) + -1 \cdot k_{1} \cdot k_{42} \cdot k_{93} \cdot x_{21} / \left(k_{43} + x_{21}\right)\right) / k_{1}\\ \frac{dx_{22}}{dt} = \left(-1 \cdot k_{1} \cdot k_{40} \cdot x_{19} \cdot x_{22} / \left(k_{41} + x_{22}\right) + 1 \cdot k_{1} \cdot k_{42} \cdot k_{93} \cdot x_{21} / \left(k_{43} + x_{21}\right)\right) / k_{1}\\ \frac{dx_{23}}{dt} = 0\\ \frac{dx_{24}}{dt} = 0\\ \frac{dx_{25}}{dt} = 0\\ \frac{dx_{26}}{dt} = 0\\ \frac{dx_{27}}{dt} = 0\\ \frac{dx_{28}}{dt} = 0\\ \frac{dx_{29}}{dt} = \left(1 \cdot k_{1} \cdot k_{48} \cdot x_{15} \cdot x_{30} / \left(k_{49} + x_{30}\right) + -1 \cdot k_{1} \cdot k_{50} \cdot k_{95} \cdot x_{29} / \left(k_{51} + x_{29}\right)\right) / k_{1}\\ \frac{dx_{30}}{dt} = \left(-1 \cdot k_{1} \cdot k_{48} \cdot x_{15} \cdot x_{30} / \left(k_{49} + x_{30}\right) + 1 \cdot k_{1} \cdot k_{50} \cdot k_{95} \cdot x_{29} / \left(k_{51} + x_{29}\right)\right) / k_{1}\\ \frac{dx_{31}}{dt} = 0\\ \frac{dx_{32}}{dt} = \left(1 \cdot k_{1} \cdot k_{56} \cdot x_{1} \cdot x_{33} / \left(k_{57} + x_{33}\right) + -1 \cdot k_{1} \cdot k_{83} \cdot x_{43} \cdot x_{32} / \left(k_{84} + x_{32}\right)\right) / k_{1}\\ \frac{dx_{33}}{dt} = \left(-1 \cdot k_{1} \cdot k_{56} \cdot x_{1} \cdot x_{33} / \left(k_{57} + x_{33}\right) + 1 \cdot k_{1} \cdot k_{83} \cdot x_{43} \cdot x_{32} / \left(k_{84} + x_{32}\right)\right) / k_{1}\\ \frac{dx_{34}}{dt} = \left(-1 \cdot k_{1} \cdot k_{58} \cdot x_{29} \cdot x_{34} / \left(k_{59} + x_{34}\right) + 1 \cdot k_{1} \cdot k_{60} \cdot x_{35}\right) / k_{1}\\ \frac{dx_{35}}{dt} = \left(1 \cdot k_{1} \cdot k_{58} \cdot x_{29} \cdot x_{34} / \left(k_{59} + x_{34}\right) + -1 \cdot k_{1} \cdot k_{60} \cdot x_{35}\right) / k_{1}\\ \frac{dx_{36}}{dt} = 0\\ \frac{dx_{37}}{dt} = 0\\ \frac{dx_{38}}{dt} = 0\\ \frac{dx_{39}}{dt} = 0\\ \frac{dx_{40}}{dt} = 0\\ \frac{dx_{41}}{dt} = 1 \cdot k_{1} \cdot k_{79} \cdot x_{17} \cdot x_{42} / \left(k_{80} + x_{42}\right) / k_{1}\\ \frac{dx_{42}}{dt} = -1 \cdot k_{1} \cdot k_{79} \cdot x_{17} \cdot x_{42} / \left(k_{80} + x_{42}\right) / k_{1}\\ \frac{dx_{43}}{dt} = 1 \cdot k_{1} \cdot k_{81} \cdot x_{41} \cdot x_{44} / \left(k_{82} + x_{44}\right) / k_{1}\\ \frac{dx_{44}}{dt} = -1 \cdot k_{1} \cdot k_{81} \cdot x_{41} \cdot x_{44} / \left(k_{82} + x_{44}\right) / k_{1}\\ \frac{dx_{45}}{dt} = \left(-1 \cdot k_{1} \cdot k_{86} \cdot x_{46} \cdot x_{45} / \left(k_{87} + x_{45}\right) + 1 \cdot k_{1} \cdot k_{88}\right) / k_{1}\\ \frac{dx_{46}}{dt} = -1 \cdot k_{1} \cdot k_{85} \cdot x_{46} / k_{1}\\ \frac{dx_{47}}{dt} = 1 \cdot k_{1} \cdot k_{86} \cdot x_{46} \cdot x_{45} / \left(k_{87} + x_{45}\right) / k_{1}\\ \frac{dx_{48}}{dt} = 0