\frac{dx_{1}}{dt} = 1 \cdot k_{1} \cdot \left(k_{3} \cdot \left(1 - x_{1}\right) - k_{2} \cdot x_{1}\right) / k_{1}\\ \frac{dx_{2}}{dt} = 1 \cdot k_{1} \cdot \left(\left(1 - x_{2}\right) \cdot k_{4} \cdot x_{1} - k_{5} \cdot x_{2}\right) / k_{1}\\ \frac{dx_{3}}{dt} = 1 \cdot k_{1} \cdot \left(k_{6} / \left(k_{6} + x_{4}\right) \cdot \left(1 - x_{3}\right) \cdot k_{7} - k_{8} \cdot x_{3}\right) / k_{1}\\ \frac{dx_{4}}{dt} = 1 \cdot k_{1} \cdot \left(k_{10} / \left(k_{10} + x_{3}\right) \cdot k_{14} - \left(k_{13} \cdot x_{4} \cdot x_{1} + k_{11} \cdot x_{4} + k_{12} \cdot x_{6} \cdot x_{4} / \left(k_{9} + x_{4}\right)\right)\right) / k_{1}\\ \frac{dx_{5}}{dt} = 1 \cdot k_{1} \cdot \left(k_{16} \cdot x_{4} \cdot x_{1} - k_{15} \cdot x_{5}\right) / k_{1}\\ \frac{dx_{6}}{dt} = 1 \cdot k_{1} \cdot \left(k_{20} \cdot x_{2} \cdot x_{5} + k_{21} \cdot x_{6}^{5} / \left(k_{17}^{5} + x_{6}^{5}\right) - k_{19} \cdot x_{6} / \left(k_{18} + x_{6}\right)\right) / k_{1}