\frac{dx_{1}}{dt} = \left(1 \cdot k_{31} \cdot x_{8} \cdot \left(1 - x_{1} / \left(k_{32} \cdot x_{8}\right)\right) / \left(k_{33} \cdot \left(1 + x_{8} / k_{33} + x_{1} / k_{34}\right)\right) + -1 \cdot k_{43} \cdot x_{1} \cdot \left(1 - x_{42} / \left(k_{44} \cdot x_{1}\right)\right) / \left(k_{45} \cdot \left(1 + x_{1} / k_{45} + x_{42} / k_{46}\right)\right)\right) / k_{1}\\ \frac{dx_{2}}{dt} = \left(-1 \cdot \left(x_{38} \cdot k_{82} \cdot x_{2} - x_{37} \cdot k_{82} \cdot x_{4}\right) + 1 \cdot k_{152} \cdot x_{37} / \left(k_{153} \cdot \left(1 + x_{37} / k_{153}\right)\right)\right) / k_{1}\\ \frac{dx_{3}}{dt} = \left(-1 \cdot k_{17} \cdot k_{18} \cdot x_{9} \cdot x_{3} \cdot \left(1 - x_{32} \cdot x_{5} / \left(k_{21} \cdot x_{9} \cdot x_{3}\right)\right) / \left(k_{19} \cdot k_{20} \cdot \left(x_{32} + k_{18}\right) \cdot \left(k_{22} / k_{20} + x_{9} / k_{19} + x_{3} / k_{20} + x_{5} / k_{23} + x_{32} \cdot x_{5} / \left(k_{23} \cdot k_{24}\right) + x_{9} \cdot x_{3} / \left(k_{19} \cdot k_{20}\right)\right)\right) + -1 \cdot k_{47} \cdot x_{25} \cdot x_{3} \cdot \left(1 - x_{6} \cdot x_{5} / \left(k_{48} \cdot x_{25} \cdot x_{3}\right)\right) / \left(k_{49} \cdot k_{50} \cdot \left(1 + x_{25} / k_{49} + x_{6} / k_{51}\right) \cdot \left(1 + x_{3} / k_{50} + x_{5} / k_{52}\right)\right) + 1 \cdot \left(k_{79} \cdot x_{5}^{2} - x_{43} \cdot x_{3} \cdot k_{80}\right) + 1 \cdot k_{118} \cdot x_{22} \cdot x_{5} \cdot \left(1 - x_{44} \cdot x_{3} / \left(k_{119} \cdot x_{22} \cdot x_{5}\right)\right) / \left(k_{120} \cdot k_{121} \cdot \left(1 + x_{22} / k_{120} + x_{44} / k_{122}\right) \cdot \left(1 + x_{5} / k_{121} + x_{3} / k_{123}\right)\right) + 1 \cdot k_{131} \cdot x_{38} \cdot x_{5} \cdot \left(1 - k_{161} \cdot x_{3} / \left(k_{132} \cdot x_{38} \cdot x_{5}\right)\right) / \left(k_{133} \cdot k_{134} \cdot \left(1 + x_{38} / k_{133} + k_{161} / k_{135}\right) \cdot \left(1 + x_{5} / k_{134} + x_{3} / k_{136}\right)\right)\right) / k_{2}\\ \frac{dx_{4}}{dt} = \left(-1 \cdot k_{4} \cdot x_{4} \cdot \left(1 - x_{33} / \left(k_{5} \cdot x_{4}\right)\right) / \left(k_{6} \cdot \left(1 + x_{4} / k_{6} + x_{33} / k_{7}\right)\right) + 1 \cdot \left(x_{38} \cdot k_{82} \cdot x_{2} - x_{37} \cdot k_{82} \cdot x_{4}\right) + -1 \cdot k_{124} \cdot x_{4} \cdot x_{46} \cdot \left(1 - x_{38} \cdot x_{31} / \left(k_{125} \cdot x_{4} \cdot x_{46}\right)\right) / \left(k_{126} \cdot k_{127} \cdot \left(1 + x_{4} / k_{126} + x_{38} / k_{128}\right) \cdot \left(1 + x_{46} / k_{127} + x_{31} / k_{129}\right)\right) + 1 \cdot k_{137} \cdot x_{32} \cdot \left(1 - x_{33} \cdot x_{4} / \left(x_{32} \cdot k_{142}\right)\right) / \left(k_{138} \cdot \left(1 + x_{3} / k_{139} + x_{5} / k_{140} + x_{43} / k_{141}\right) \cdot \left(1 + x_{33} / k_{143} + x_{4} / k_{144} + x_{32} / \left(k_{138} \cdot \left(1 + x_{3} / k_{139} + x_{5} / k_{140} + x_{43} / k_{141}\right)\right) + x_{33} \cdot x_{4} / \left(k_{143} \cdot k_{144}\right) + x_{32} \cdot x_{33} / \left(k_{138} \cdot k_{145} \cdot \left(1 + x_{3} / k_{139} + x_{5} / k_{140} + x_{43} / k_{141}\right)\right)\right)\right)\right) / k_{2}\\ \frac{dx_{5}}{dt} = \left(1 \cdot k_{17} \cdot k_{18} \cdot x_{9} \cdot x_{3} \cdot \left(1 - x_{32} \cdot x_{5} / \left(k_{21} \cdot x_{9} \cdot x_{3}\right)\right) / \left(k_{19} \cdot k_{20} \cdot \left(x_{32} + k_{18}\right) \cdot \left(k_{22} / k_{20} + x_{9} / k_{19} + x_{3} / k_{20} + x_{5} / k_{23} + x_{32} \cdot x_{5} / \left(k_{23} \cdot k_{24}\right) + x_{9} \cdot x_{3} / \left(k_{19} \cdot k_{20}\right)\right)\right) + 1 \cdot k_{47} \cdot x_{25} \cdot x_{3} \cdot \left(1 - x_{6} \cdot x_{5} / \left(k_{48} \cdot x_{25} \cdot x_{3}\right)\right) / \left(k_{49} \cdot k_{50} \cdot \left(1 + x_{25} / k_{49} + x_{6} / k_{51}\right) \cdot \left(1 + x_{3} / k_{50} + x_{5} / k_{52}\right)\right) + -2 \cdot \left(k_{79} \cdot x_{5}^{2} - x_{43} \cdot x_{3} \cdot k_{80}\right) + -1 \cdot k_{118} \cdot x_{22} \cdot x_{5} \cdot \left(1 - x_{44} \cdot x_{3} / \left(k_{119} \cdot x_{22} \cdot x_{5}\right)\right) / \left(k_{120} \cdot k_{121} \cdot \left(1 + x_{22} / k_{120} + x_{44} / k_{122}\right) \cdot \left(1 + x_{5} / k_{121} + x_{3} / k_{123}\right)\right) + -1 \cdot k_{131} \cdot x_{38} \cdot x_{5} \cdot \left(1 - k_{161} \cdot x_{3} / \left(k_{132} \cdot x_{38} \cdot x_{5}\right)\right) / \left(k_{133} \cdot k_{134} \cdot \left(1 + x_{38} / k_{133} + k_{161} / k_{135}\right) \cdot \left(1 + x_{5} / k_{134} + x_{3} / k_{136}\right)\right)\right) / k_{2}\\ \frac{dx_{6}}{dt} = \left(-1 \cdot k_{25} \cdot x_{6} \cdot x_{14} \cdot \left(1 - x_{41} \cdot x_{27} / \left(k_{26} \cdot x_{6} \cdot x_{14}\right)\right) / \left(k_{27} \cdot k_{28} \cdot \left(1 + x_{6} / k_{27} + x_{41} / k_{29}\right) \cdot \left(1 + x_{14} / k_{28} + x_{27} / k_{30}\right)\right) + 1 \cdot k_{47} \cdot x_{25} \cdot x_{3} \cdot \left(1 - x_{6} \cdot x_{5} / \left(k_{48} \cdot x_{25} \cdot x_{3}\right)\right) / \left(k_{49} \cdot k_{50} \cdot \left(1 + x_{25} / k_{49} + x_{6} / k_{51}\right) \cdot \left(1 + x_{3} / k_{50} + x_{5} / k_{52}\right)\right) + -1 \cdot k_{74} \cdot x_{6} \cdot \left(1 - x_{9} / \left(k_{76} \cdot x_{6}\right)\right) / \left(k_{75} \cdot \left(1 + x_{6} / k_{75} + x_{9} / k_{77} + x_{15} / k_{78}\right)\right)\right) / k_{2}\\ \frac{dx_{7}}{dt} = \left(-1 \cdot k_{8} \cdot x_{7} \cdot \left(1 - x_{29} \cdot x_{13} / \left(k_{14} \cdot x_{42} \cdot x_{7}\right)\right) \cdot x_{42} / \left(k_{9} \cdot \left(1 + x_{7} / k_{11} + x_{13} / k_{10}\right)\right)^{k_{12}} / \left(k_{13} \cdot \left(1 + x_{42} / \left(k_{9} \cdot \left(1 + x_{7} / k_{11} + x_{13} / k_{10}\right)\right)^{k_{12}} + x_{29} / k_{15}\right) \cdot \left(1 + x_{7} / k_{13} + x_{13} / k_{16}\right)\right) + 1 \cdot k_{55} \cdot x_{23} \cdot x_{13} \cdot \left(1 - x_{20} \cdot x_{7} / \left(k_{56} \cdot x_{23} \cdot x_{13}\right)\right) / \left(k_{57} \cdot k_{58} \cdot \left(1 + x_{23} / k_{57} + x_{20} / k_{59}\right) \cdot \left(1 + x_{13} / k_{58} + x_{7} / k_{60}\right)\right) + -2 \cdot \left(k_{62} \cdot x_{7}^{2} - x_{45} \cdot x_{13} \cdot k_{63}\right) + 1 \cdot k_{130} \cdot x_{13} / x_{7}\right) / k_{1}\\ \frac{dx_{8}}{dt} = \left(-1 \cdot k_{31} \cdot x_{8} \cdot \left(1 - x_{1} / \left(k_{32} \cdot x_{8}\right)\right) / \left(k_{33} \cdot \left(1 + x_{8} / k_{33} + x_{1} / k_{34}\right)\right) + 1 \cdot \left(k_{53} \cdot x_{44} - k_{53} \cdot x_{8}\right)\right) / k_{1}\\ \frac{dx_{9}}{dt} = \left(-1 \cdot k_{17} \cdot k_{18} \cdot x_{9} \cdot x_{3} \cdot \left(1 - x_{32} \cdot x_{5} / \left(k_{21} \cdot x_{9} \cdot x_{3}\right)\right) / \left(k_{19} \cdot k_{20} \cdot \left(x_{32} + k_{18}\right) \cdot \left(k_{22} / k_{20} + x_{9} / k_{19} + x_{3} / k_{20} + x_{5} / k_{23} + x_{32} \cdot x_{5} / \left(k_{23} \cdot k_{24}\right) + x_{9} \cdot x_{3} / \left(k_{19} \cdot k_{20}\right)\right)\right) + 1 \cdot k_{74} \cdot x_{6} \cdot \left(1 - x_{9} / \left(k_{76} \cdot x_{6}\right)\right) / \left(k_{75} \cdot \left(1 + x_{6} / k_{75} + x_{9} / k_{77} + x_{15} / k_{78}\right)\right)\right) / k_{2}\\ \frac{dx_{10}}{dt} = 0\\ \frac{dx_{11}}{dt} = 0\\ \frac{dx_{12}}{dt} = \left(-1 \cdot k_{37} \cdot x_{20} \cdot x_{12} \cdot \left(1 - x_{39} \cdot x_{28} / \left(k_{38} \cdot x_{20} \cdot x_{12}\right)\right) / \left(k_{39} \cdot k_{40} \cdot \left(1 + x_{20} / k_{39} + x_{39} / k_{41}\right) \cdot \left(1 + x_{12} / k_{40} + x_{28} / k_{42}\right)\right) + 1 \cdot k_{54} \cdot x_{28} + -1 \cdot k_{88} \cdot x_{18} \cdot x_{12} \cdot \left(1 - x_{17} \cdot x_{28} / \left(k_{89} \cdot x_{18} \cdot x_{12}\right)\right) / \left(k_{90} \cdot k_{91} \cdot \left(1 + x_{18} / k_{90} + x_{17} / k_{92}\right) \cdot \left(1 + x_{12} / k_{91} + x_{28} / k_{93}\right)\right) + 1 \cdot k_{112} \cdot x_{40} \cdot x_{28} \cdot \left(1 - x_{35} \cdot x_{12} / \left(k_{113} \cdot x_{40} \cdot x_{28}\right)\right) / \left(k_{114} \cdot k_{115} \cdot \left(1 + x_{40} / k_{114} + x_{35} / k_{116}\right) \cdot \left(1 + x_{28} / k_{115} + x_{12} / k_{117}\right)\right)\right) / k_{1}\\ \frac{dx_{13}}{dt} = \left(1 \cdot k_{8} \cdot x_{7} \cdot \left(1 - x_{29} \cdot x_{13} / \left(k_{14} \cdot x_{42} \cdot x_{7}\right)\right) \cdot x_{42} / \left(k_{9} \cdot \left(1 + x_{7} / k_{11} + x_{13} / k_{10}\right)\right)^{k_{12}} / \left(k_{13} \cdot \left(1 + x_{42} / \left(k_{9} \cdot \left(1 + x_{7} / k_{11} + x_{13} / k_{10}\right)\right)^{k_{12}} + x_{29} / k_{15}\right) \cdot \left(1 + x_{7} / k_{13} + x_{13} / k_{16}\right)\right) + -1 \cdot k_{55} \cdot x_{23} \cdot x_{13} \cdot \left(1 - x_{20} \cdot x_{7} / \left(k_{56} \cdot x_{23} \cdot x_{13}\right)\right) / \left(k_{57} \cdot k_{58} \cdot \left(1 + x_{23} / k_{57} + x_{20} / k_{59}\right) \cdot \left(1 + x_{13} / k_{58} + x_{7} / k_{60}\right)\right) + 1 \cdot \left(k_{62} \cdot x_{7}^{2} - x_{45} \cdot x_{13} \cdot k_{63}\right) + -1 \cdot k_{130} \cdot x_{13} / x_{7}\right) / k_{1}\\ \frac{dx_{14}}{dt} = \left(-1 \cdot k_{25} \cdot x_{6} \cdot x_{14} \cdot \left(1 - x_{41} \cdot x_{27} / \left(k_{26} \cdot x_{6} \cdot x_{14}\right)\right) / \left(k_{27} \cdot k_{28} \cdot \left(1 + x_{6} / k_{27} + x_{41} / k_{29}\right) \cdot \left(1 + x_{14} / k_{28} + x_{27} / k_{30}\right)\right) + 1 \cdot k_{61} \cdot x_{27} + -1 \cdot k_{68} \cdot x_{15} \cdot x_{14} \cdot \left(1 - x_{19} \cdot x_{27} / \left(k_{69} \cdot x_{15} \cdot x_{14}\right)\right) / \left(k_{70} \cdot k_{71} \cdot \left(1 + x_{15} / k_{70} + x_{19} / k_{72}\right) \cdot \left(1 + x_{14} / k_{71} + x_{27} / k_{73}\right)\right)\right) / k_{2}\\ \frac{dx_{15}}{dt} = \left(-1 \cdot k_{68} \cdot x_{15} \cdot x_{14} \cdot \left(1 - x_{19} \cdot x_{27} / \left(k_{69} \cdot x_{15} \cdot x_{14}\right)\right) / \left(k_{70} \cdot k_{71} \cdot \left(1 + x_{15} / k_{70} + x_{19} / k_{72}\right) \cdot \left(1 + x_{14} / k_{71} + x_{27} / k_{73}\right)\right) + 1 \cdot \left(k_{2} \cdot k_{111} \cdot \left(x_{41} - x_{15} / k_{108}\right) + k_{107} \cdot x_{41} \cdot \left(1 - x_{15} / \left(k_{108} \cdot x_{41}\right)\right) / \left(k_{109} \cdot \left(1 + x_{41} / k_{109} + x_{15} / k_{110}\right)\right)\right)\right) / k_{2}\\ \frac{dx_{16}}{dt} = 0\\ \frac{dx_{17}}{dt} = \left(1 \cdot k_{88} \cdot x_{18} \cdot x_{12} \cdot \left(1 - x_{17} \cdot x_{28} / \left(k_{89} \cdot x_{18} \cdot x_{12}\right)\right) / \left(k_{90} \cdot k_{91} \cdot \left(1 + x_{18} / k_{90} + x_{17} / k_{92}\right) \cdot \left(1 + x_{12} / k_{91} + x_{28} / k_{93}\right)\right) + -1 \cdot k_{94} \cdot x_{17} \cdot \left(1 - k_{157} / \left(k_{95} \cdot x_{17}\right)\right) / \left(k_{96} \cdot \left(1 + x_{17} / k_{96} + k_{157} / k_{97}\right)\right)\right) / k_{1}\\ \frac{dx_{18}}{dt} = \left(1 \cdot \left(k_{87} \cdot k_{1} \cdot \left(x_{39} - x_{18} / k_{84}\right) + k_{83} \cdot x_{39} \cdot \left(1 - x_{18} / \left(k_{84} \cdot x_{39}\right)\right) / \left(k_{85} \cdot \left(1 + x_{39} / k_{85} + x_{18} / k_{86}\right)\right)\right) + -1 \cdot k_{88} \cdot x_{18} \cdot x_{12} \cdot \left(1 - x_{17} \cdot x_{28} / \left(k_{89} \cdot x_{18} \cdot x_{12}\right)\right) / \left(k_{90} \cdot k_{91} \cdot \left(1 + x_{18} / k_{90} + x_{17} / k_{92}\right) \cdot \left(1 + x_{12} / k_{91} + x_{28} / k_{93}\right)\right)\right) / k_{1}\\ \frac{dx_{19}}{dt} = \left(1 \cdot k_{68} \cdot x_{15} \cdot x_{14} \cdot \left(1 - x_{19} \cdot x_{27} / \left(k_{69} \cdot x_{15} \cdot x_{14}\right)\right) / \left(k_{70} \cdot k_{71} \cdot \left(1 + x_{15} / k_{70} + x_{19} / k_{72}\right) \cdot \left(1 + x_{14} / k_{71} + x_{27} / k_{73}\right)\right) + -1 \cdot k_{98} \cdot x_{19} \cdot \left(1 - k_{158} / \left(k_{99} \cdot x_{19}\right)\right) / \left(k_{100} \cdot \left(1 + x_{19} / k_{100} + k_{158} / k_{101}\right)\right)\right) / k_{2}\\ \frac{dx_{20}}{dt} = \left(-1 \cdot k_{37} \cdot x_{20} \cdot x_{12} \cdot \left(1 - x_{39} \cdot x_{28} / \left(k_{38} \cdot x_{20} \cdot x_{12}\right)\right) / \left(k_{39} \cdot k_{40} \cdot \left(1 + x_{20} / k_{39} + x_{39} / k_{41}\right) \cdot \left(1 + x_{12} / k_{40} + x_{28} / k_{42}\right)\right) + 1 \cdot k_{55} \cdot x_{23} \cdot x_{13} \cdot \left(1 - x_{20} \cdot x_{7} / \left(k_{56} \cdot x_{23} \cdot x_{13}\right)\right) / \left(k_{57} \cdot k_{58} \cdot \left(1 + x_{23} / k_{57} + x_{20} / k_{59}\right) \cdot \left(1 + x_{13} / k_{58} + x_{7} / k_{60}\right)\right) + -1 \cdot k_{64} \cdot x_{20} \cdot \left(1 - x_{23} / \left(k_{65} \cdot x_{20}\right)\right) / \left(k_{66} \cdot \left(1 + x_{20} / k_{66} + x_{23} / k_{67}\right)\right)\right) / k_{1}\\ \frac{dx_{21}}{dt} = 0\\ \frac{dx_{22}}{dt} = \left(-1 \cdot k_{118} \cdot x_{22} \cdot x_{5} \cdot \left(1 - x_{44} \cdot x_{3} / \left(k_{119} \cdot x_{22} \cdot x_{5}\right)\right) / \left(k_{120} \cdot k_{121} \cdot \left(1 + x_{22} / k_{120} + x_{44} / k_{122}\right) \cdot \left(1 + x_{5} / k_{121} + x_{3} / k_{123}\right)\right) + 1 \cdot k_{146} \cdot x_{33} \cdot x_{31} \cdot \left(1 - x_{22} \cdot x_{46} / \left(k_{147} \cdot x_{33} \cdot x_{31}\right)\right) / \left(k_{148} \cdot k_{149} \cdot \left(1 + x_{33} / k_{148} + x_{22} / k_{150}\right) \cdot \left(1 + x_{31} / k_{149} + x_{46} / k_{151}\right)\right)\right) / k_{2}\\ \frac{dx_{23}}{dt} = \left(-1 \cdot k_{55} \cdot x_{23} \cdot x_{13} \cdot \left(1 - x_{20} \cdot x_{7} / \left(k_{56} \cdot x_{23} \cdot x_{13}\right)\right) / \left(k_{57} \cdot k_{58} \cdot \left(1 + x_{23} / k_{57} + x_{20} / k_{59}\right) \cdot \left(1 + x_{13} / k_{58} + x_{7} / k_{60}\right)\right) + 1 \cdot k_{64} \cdot x_{20} \cdot \left(1 - x_{23} / \left(k_{65} \cdot x_{20}\right)\right) / \left(k_{66} \cdot \left(1 + x_{20} / k_{66} + x_{23} / k_{67}\right)\right) + -1 \cdot \left(k_{102} \cdot x_{23} - k_{103} \cdot x_{25}\right) + 1 \cdot k_{104} \cdot \left(k_{159} - x_{23}\right) / \left(k_{105} + k_{159} + x_{23} + k_{106} \cdot k_{159} \cdot x_{23} / k_{105}\right)\right) / k_{1}\\ \frac{dx_{24}}{dt} = 0\\ \frac{dx_{25}}{dt} = \left(-1 \cdot k_{47} \cdot x_{25} \cdot x_{3} \cdot \left(1 - x_{6} \cdot x_{5} / \left(k_{48} \cdot x_{25} \cdot x_{3}\right)\right) / \left(k_{49} \cdot k_{50} \cdot \left(1 + x_{25} / k_{49} + x_{6} / k_{51}\right) \cdot \left(1 + x_{3} / k_{50} + x_{5} / k_{52}\right)\right) + 1 \cdot \left(k_{102} \cdot x_{23} - k_{103} \cdot x_{25}\right)\right) / k_{2}\\ \frac{dx_{26}}{dt} = 0\\ \frac{dx_{27}}{dt} = \left(1 \cdot k_{25} \cdot x_{6} \cdot x_{14} \cdot \left(1 - x_{41} \cdot x_{27} / \left(k_{26} \cdot x_{6} \cdot x_{14}\right)\right) / \left(k_{27} \cdot k_{28} \cdot \left(1 + x_{6} / k_{27} + x_{41} / k_{29}\right) \cdot \left(1 + x_{14} / k_{28} + x_{27} / k_{30}\right)\right) + -1 \cdot k_{61} \cdot x_{27} + 1 \cdot k_{68} \cdot x_{15} \cdot x_{14} \cdot \left(1 - x_{19} \cdot x_{27} / \left(k_{69} \cdot x_{15} \cdot x_{14}\right)\right) / \left(k_{70} \cdot k_{71} \cdot \left(1 + x_{15} / k_{70} + x_{19} / k_{72}\right) \cdot \left(1 + x_{14} / k_{71} + x_{27} / k_{73}\right)\right)\right) / k_{2}\\ \frac{dx_{28}}{dt} = \left(1 \cdot k_{37} \cdot x_{20} \cdot x_{12} \cdot \left(1 - x_{39} \cdot x_{28} / \left(k_{38} \cdot x_{20} \cdot x_{12}\right)\right) / \left(k_{39} \cdot k_{40} \cdot \left(1 + x_{20} / k_{39} + x_{39} / k_{41}\right) \cdot \left(1 + x_{12} / k_{40} + x_{28} / k_{42}\right)\right) + -1 \cdot k_{54} \cdot x_{28} + 1 \cdot k_{88} \cdot x_{18} \cdot x_{12} \cdot \left(1 - x_{17} \cdot x_{28} / \left(k_{89} \cdot x_{18} \cdot x_{12}\right)\right) / \left(k_{90} \cdot k_{91} \cdot \left(1 + x_{18} / k_{90} + x_{17} / k_{92}\right) \cdot \left(1 + x_{12} / k_{91} + x_{28} / k_{93}\right)\right) + -1 \cdot k_{112} \cdot x_{40} \cdot x_{28} \cdot \left(1 - x_{35} \cdot x_{12} / \left(k_{113} \cdot x_{40} \cdot x_{28}\right)\right) / \left(k_{114} \cdot k_{115} \cdot \left(1 + x_{40} / k_{114} + x_{35} / k_{116}\right) \cdot \left(1 + x_{28} / k_{115} + x_{12} / k_{117}\right)\right)\right) / k_{1}\\ \frac{dx_{29}}{dt} = \left(1 \cdot k_{8} \cdot x_{7} \cdot \left(1 - x_{29} \cdot x_{13} / \left(k_{14} \cdot x_{42} \cdot x_{7}\right)\right) \cdot x_{42} / \left(k_{9} \cdot \left(1 + x_{7} / k_{11} + x_{13} / k_{10}\right)\right)^{k_{12}} / \left(k_{13} \cdot \left(1 + x_{42} / \left(k_{9} \cdot \left(1 + x_{7} / k_{11} + x_{13} / k_{10}\right)\right)^{k_{12}} + x_{29} / k_{15}\right) \cdot \left(1 + x_{7} / k_{13} + x_{13} / k_{16}\right)\right) + -1 \cdot k_{35} \cdot x_{29} / \left(k_{36} \cdot \left(1 + x_{29} / k_{36}\right)\right)\right) / k_{1}\\ \frac{dx_{30}}{dt} = 0\\ \frac{dx_{31}}{dt} = \left(1 \cdot k_{124} \cdot x_{4} \cdot x_{46} \cdot \left(1 - x_{38} \cdot x_{31} / \left(k_{125} \cdot x_{4} \cdot x_{46}\right)\right) / \left(k_{126} \cdot k_{127} \cdot \left(1 + x_{4} / k_{126} + x_{38} / k_{128}\right) \cdot \left(1 + x_{46} / k_{127} + x_{31} / k_{129}\right)\right) + -1 \cdot k_{146} \cdot x_{33} \cdot x_{31} \cdot \left(1 - x_{22} \cdot x_{46} / \left(k_{147} \cdot x_{33} \cdot x_{31}\right)\right) / \left(k_{148} \cdot k_{149} \cdot \left(1 + x_{33} / k_{148} + x_{22} / k_{150}\right) \cdot \left(1 + x_{31} / k_{149} + x_{46} / k_{151}\right)\right)\right) / k_{2}\\ \frac{dx_{32}}{dt} = \left(1 \cdot k_{17} \cdot k_{18} \cdot x_{9} \cdot x_{3} \cdot \left(1 - x_{32} \cdot x_{5} / \left(k_{21} \cdot x_{9} \cdot x_{3}\right)\right) / \left(k_{19} \cdot k_{20} \cdot \left(x_{32} + k_{18}\right) \cdot \left(k_{22} / k_{20} + x_{9} / k_{19} + x_{3} / k_{20} + x_{5} / k_{23} + x_{32} \cdot x_{5} / \left(k_{23} \cdot k_{24}\right) + x_{9} \cdot x_{3} / \left(k_{19} \cdot k_{20}\right)\right)\right) + -1 \cdot k_{137} \cdot x_{32} \cdot \left(1 - x_{33} \cdot x_{4} / \left(x_{32} \cdot k_{142}\right)\right) / \left(k_{138} \cdot \left(1 + x_{3} / k_{139} + x_{5} / k_{140} + x_{43} / k_{141}\right) \cdot \left(1 + x_{33} / k_{143} + x_{4} / k_{144} + x_{32} / \left(k_{138} \cdot \left(1 + x_{3} / k_{139} + x_{5} / k_{140} + x_{43} / k_{141}\right)\right) + x_{33} \cdot x_{4} / \left(k_{143} \cdot k_{144}\right) + x_{32} \cdot x_{33} / \left(k_{138} \cdot k_{145} \cdot \left(1 + x_{3} / k_{139} + x_{5} / k_{140} + x_{43} / k_{141}\right)\right)\right)\right)\right) / k_{2}\\ \frac{dx_{33}}{dt} = \left(1 \cdot k_{4} \cdot x_{4} \cdot \left(1 - x_{33} / \left(k_{5} \cdot x_{4}\right)\right) / \left(k_{6} \cdot \left(1 + x_{4} / k_{6} + x_{33} / k_{7}\right)\right) + 1 \cdot k_{137} \cdot x_{32} \cdot \left(1 - x_{33} \cdot x_{4} / \left(x_{32} \cdot k_{142}\right)\right) / \left(k_{138} \cdot \left(1 + x_{3} / k_{139} + x_{5} / k_{140} + x_{43} / k_{141}\right) \cdot \left(1 + x_{33} / k_{143} + x_{4} / k_{144} + x_{32} / \left(k_{138} \cdot \left(1 + x_{3} / k_{139} + x_{5} / k_{140} + x_{43} / k_{141}\right)\right) + x_{33} \cdot x_{4} / \left(k_{143} \cdot k_{144}\right) + x_{32} \cdot x_{33} / \left(k_{138} \cdot k_{145} \cdot \left(1 + x_{3} / k_{139} + x_{5} / k_{140} + x_{43} / k_{141}\right)\right)\right)\right) + -1 \cdot k_{146} \cdot x_{33} \cdot x_{31} \cdot \left(1 - x_{22} \cdot x_{46} / \left(k_{147} \cdot x_{33} \cdot x_{31}\right)\right) / \left(k_{148} \cdot k_{149} \cdot \left(1 + x_{33} / k_{148} + x_{22} / k_{150}\right) \cdot \left(1 + x_{31} / k_{149} + x_{46} / k_{151}\right)\right)\right) / k_{2}\\ \frac{dx_{34}}{dt} = 0\\ \frac{dx_{35}}{dt} = \left(-1 \cdot k_{81} \cdot x_{35} + 1 \cdot k_{112} \cdot x_{40} \cdot x_{28} \cdot \left(1 - x_{35} \cdot x_{12} / \left(k_{113} \cdot x_{40} \cdot x_{28}\right)\right) / \left(k_{114} \cdot k_{115} \cdot \left(1 + x_{40} / k_{114} + x_{35} / k_{116}\right) \cdot \left(1 + x_{28} / k_{115} + x_{12} / k_{117}\right)\right)\right) / k_{1}\\ \frac{dx_{36}}{dt} = 0\\ \frac{dx_{37}}{dt} = \left(1 \cdot \left(x_{38} \cdot k_{82} \cdot x_{2} - x_{37} \cdot k_{82} \cdot x_{4}\right) + -1 \cdot k_{152} \cdot x_{37} / \left(k_{153} \cdot \left(1 + x_{37} / k_{153}\right)\right)\right) / k_{1}\\ \frac{dx_{38}}{dt} = \left(-1 \cdot \left(x_{38} \cdot k_{82} \cdot x_{2} - x_{37} \cdot k_{82} \cdot x_{4}\right) + 1 \cdot k_{124} \cdot x_{4} \cdot x_{46} \cdot \left(1 - x_{38} \cdot x_{31} / \left(k_{125} \cdot x_{4} \cdot x_{46}\right)\right) / \left(k_{126} \cdot k_{127} \cdot \left(1 + x_{4} / k_{126} + x_{38} / k_{128}\right) \cdot \left(1 + x_{46} / k_{127} + x_{31} / k_{129}\right)\right) + -1 \cdot k_{131} \cdot x_{38} \cdot x_{5} \cdot \left(1 - k_{161} \cdot x_{3} / \left(k_{132} \cdot x_{38} \cdot x_{5}\right)\right) / \left(k_{133} \cdot k_{134} \cdot \left(1 + x_{38} / k_{133} + k_{161} / k_{135}\right) \cdot \left(1 + x_{5} / k_{134} + x_{3} / k_{136}\right)\right)\right) / k_{2}\\ \frac{dx_{39}}{dt} = \left(1 \cdot k_{37} \cdot x_{20} \cdot x_{12} \cdot \left(1 - x_{39} \cdot x_{28} / \left(k_{38} \cdot x_{20} \cdot x_{12}\right)\right) / \left(k_{39} \cdot k_{40} \cdot \left(1 + x_{20} / k_{39} + x_{39} / k_{41}\right) \cdot \left(1 + x_{12} / k_{40} + x_{28} / k_{42}\right)\right) + -1 \cdot \left(k_{87} \cdot k_{1} \cdot \left(x_{39} - x_{18} / k_{84}\right) + k_{83} \cdot x_{39} \cdot \left(1 - x_{18} / \left(k_{84} \cdot x_{39}\right)\right) / \left(k_{85} \cdot \left(1 + x_{39} / k_{85} + x_{18} / k_{86}\right)\right)\right)\right) / k_{1}\\ \frac{dx_{40}}{dt} = \left(1 \cdot k_{81} \cdot x_{35} + -1 \cdot k_{112} \cdot x_{40} \cdot x_{28} \cdot \left(1 - x_{35} \cdot x_{12} / \left(k_{113} \cdot x_{40} \cdot x_{28}\right)\right) / \left(k_{114} \cdot k_{115} \cdot \left(1 + x_{40} / k_{114} + x_{35} / k_{116}\right) \cdot \left(1 + x_{28} / k_{115} + x_{12} / k_{117}\right)\right)\right) / k_{1}\\ \frac{dx_{41}}{dt} = \left(1 \cdot k_{25} \cdot x_{6} \cdot x_{14} \cdot \left(1 - x_{41} \cdot x_{27} / \left(k_{26} \cdot x_{6} \cdot x_{14}\right)\right) / \left(k_{27} \cdot k_{28} \cdot \left(1 + x_{6} / k_{27} + x_{41} / k_{29}\right) \cdot \left(1 + x_{14} / k_{28} + x_{27} / k_{30}\right)\right) + -1 \cdot \left(k_{2} \cdot k_{111} \cdot \left(x_{41} - x_{15} / k_{108}\right) + k_{107} \cdot x_{41} \cdot \left(1 - x_{15} / \left(k_{108} \cdot x_{41}\right)\right) / \left(k_{109} \cdot \left(1 + x_{41} / k_{109} + x_{15} / k_{110}\right)\right)\right)\right) / k_{2}\\ \frac{dx_{42}}{dt} = \left(-1 \cdot k_{8} \cdot x_{7} \cdot \left(1 - x_{29} \cdot x_{13} / \left(k_{14} \cdot x_{42} \cdot x_{7}\right)\right) \cdot x_{42} / \left(k_{9} \cdot \left(1 + x_{7} / k_{11} + x_{13} / k_{10}\right)\right)^{k_{12}} / \left(k_{13} \cdot \left(1 + x_{42} / \left(k_{9} \cdot \left(1 + x_{7} / k_{11} + x_{13} / k_{10}\right)\right)^{k_{12}} + x_{29} / k_{15}\right) \cdot \left(1 + x_{7} / k_{13} + x_{13} / k_{16}\right)\right) + 1 \cdot k_{43} \cdot x_{1} \cdot \left(1 - x_{42} / \left(k_{44} \cdot x_{1}\right)\right) / \left(k_{45} \cdot \left(1 + x_{1} / k_{45} + x_{42} / k_{46}\right)\right)\right) / k_{1}\\ \frac{dx_{43}}{dt} = 1 \cdot \left(k_{79} \cdot x_{5}^{2} - x_{43} \cdot x_{3} \cdot k_{80}\right) / k_{2}\\ \frac{dx_{44}}{dt} = \left(-1 \cdot \left(k_{53} \cdot x_{44} - k_{53} \cdot x_{8}\right) + 1 \cdot k_{118} \cdot x_{22} \cdot x_{5} \cdot \left(1 - x_{44} \cdot x_{3} / \left(k_{119} \cdot x_{22} \cdot x_{5}\right)\right) / \left(k_{120} \cdot k_{121} \cdot \left(1 + x_{22} / k_{120} + x_{44} / k_{122}\right) \cdot \left(1 + x_{5} / k_{121} + x_{3} / k_{123}\right)\right)\right) / k_{2}\\ \frac{dx_{45}}{dt} = 1 \cdot \left(k_{62} \cdot x_{7}^{2} - x_{45} \cdot x_{13} \cdot k_{63}\right) / k_{1}\\ \frac{dx_{46}}{dt} = \left(-1 \cdot k_{124} \cdot x_{4} \cdot x_{46} \cdot \left(1 - x_{38} \cdot x_{31} / \left(k_{125} \cdot x_{4} \cdot x_{46}\right)\right) / \left(k_{126} \cdot k_{127} \cdot \left(1 + x_{4} / k_{126} + x_{38} / k_{128}\right) \cdot \left(1 + x_{46} / k_{127} + x_{31} / k_{129}\right)\right) + 1 \cdot k_{146} \cdot x_{33} \cdot x_{31} \cdot \left(1 - x_{22} \cdot x_{46} / \left(k_{147} \cdot x_{33} \cdot x_{31}\right)\right) / \left(k_{148} \cdot k_{149} \cdot \left(1 + x_{33} / k_{148} + x_{22} / k_{150}\right) \cdot \left(1 + x_{31} / k_{149} + x_{46} / k_{151}\right)\right)\right) / k_{2}