\frac{dx_{22}}{dt} = 0 / k_{30}\\ \frac{dx_{1}}{dt} = 1 / \left(1 + k_{13}\right) \cdot \left(k_{8} / \frac{171}{1000} \cdot \left(k_{13} \cdot x_{20}^{2} + x_{15}^{2}\right) - k_{8} \cdot \left(k_{13} \cdot x_{13} + x_{11}\right)\right)\\ \frac{dx_{2}}{dt} = 1 / \left(k_{13} + 1\right) \cdot \left(k_{8} / \frac{171}{1000} \cdot \left(k_{13} \cdot x_{18} \cdot x_{20} + x_{15} \cdot x_{21}\right) - k_{8} \cdot \left(k_{13} \cdot x_{17} + x_{16}\right)\right)\\ \frac{dx_{3}}{dt} = 1 / \left(1 + k_{13}\right) \cdot \left(k_{13} \cdot k_{6} \cdot x_{26} \cdot k_{17} / \left(k_{17} + x_{22}\right) \cdot x_{6} - k_{7} \cdot x_{15}\right)\\ \frac{dx_{4}}{dt} = k_{1} \cdot \left(k_{27} + k_{26} \cdot x_{16} - \left(k_{18} \cdot x_{9} + k_{25}\right) \cdot x_{4}\right)\\ \frac{dx_{5}}{dt} = k_{1} \cdot \left(\left(1 - k_{5}\right) \cdot \left(1 - k_{16}\right) - \left(k_{4} + 1 - k_{28}\right) \cdot x_{5}\right)\\ \frac{dx_{6}}{dt} = k_{2} \cdot x_{10} - \left(k_{3} + k_{6} \cdot x_{26} \cdot k_{17} / \left(k_{17} + x_{22}\right)\right) \cdot x_{6}\\ \frac{dx_{7}}{dt} = k_{1} \cdot \left(k_{4} \cdot x_{5} - \left(1 - k_{28}\right) \cdot x_{25} - k_{18} \cdot x_{4} \cdot x_{9}\right)\\ \frac{dx_{8}}{dt} = k_{6} \cdot x_{26} \cdot k_{17} / \left(k_{17} + x_{22}\right) \cdot x_{6} + k_{2} \cdot x_{15} - k_{3} \cdot \left(x_{20} + k_{11} \cdot \left(x_{17} + 2 \cdot x_{13}\right)\right)\\ \frac{dx_{13}}{dt} = k_{8} / \frac{171}{1000} \cdot x_{20}^{2} - \left(k_{8} + k_{3} \cdot k_{11}\right) \cdot x_{13}\\ \frac{dx_{17}}{dt} = k_{8} / \frac{171}{1000} \cdot x_{18} \cdot x_{20} - \left(k_{8} + k_{3} \cdot k_{11}\right) \cdot x_{17}\\ \frac{dx_{19}}{dt} = k_{3} \cdot x_{21} - k_{3} \cdot \left(x_{18} + k_{11} \cdot x_{17}\right)\\ \frac{dx_{24}}{dt} = k_{1} \cdot \left(k_{18} \cdot x_{4} \cdot x_{9} - \left(k_{22} + k_{12} \cdot \left(1 - k_{28}\right)\right) \cdot x_{24}\right)\\ \frac{dx_{26}}{dt} = k_{1} \cdot \left(k_{22} \cdot x_{24} - k_{12} \cdot \left(1 - k_{28}\right) \cdot x_{26}\right)