\frac{dx_{1}}{dt} = 0 / k_{28}\\
\frac{dx_{2}}{dt} = \left(1 \cdot k_{17} \cdot \left(k_{27} \cdot k_{23} / \left(k_{11} + k_{23}\right) - x_{2}\right) \cdot \left(x_{1} - x_{2}\right) + -1 \cdot \left(k_{4} \cdot k_{15} \cdot x_{3} / \left(k_{16} + x_{3}\right) \cdot x_{6} / \left(k_{10} + x_{6}\right)^{3} \cdot x_{2} - k_{5} \cdot x_{3} / \left(k_{11} + x_{3}\right)^{2} + k_{6} \cdot x_{2} \cdot x_{2}\right)\right) / k_{30}\\
\frac{dx_{3}}{dt} = \left(1 \cdot \left(\left(-k_{7}\right) \cdot x_{3} \cdot \left(k_{18} - x_{4}\right) + k_{8} \cdot x_{4}\right) + 1 \cdot \left(k_{4} \cdot k_{15} \cdot x_{3} / \left(k_{16} + x_{3}\right) \cdot x_{6} / \left(k_{10} + x_{6}\right)^{3} \cdot x_{2} - k_{5} \cdot x_{3} / \left(k_{11} + x_{3}\right)^{2} + k_{6} \cdot x_{2} \cdot x_{2}\right) + -1 \cdot k_{21} \cdot x_{3}^{4} / \left(k_{14}^{4} + x_{3}^{4}\right) + -1 \cdot k_{20} \cdot x_{3} / \left(k_{13} + x_{3}\right) + 1 \cdot k_{22} + -1 \cdot k_{19} \cdot x_{3}^{2} / \left(k_{12}^{2} + x_{3}^{2}\right)\right) / k_{29}\\
\frac{dx_{4}}{dt} = -1 \cdot \left(\left(-k_{7}\right) \cdot x_{3} \cdot \left(k_{18} - x_{4}\right) + k_{8} \cdot x_{4}\right) / k_{29}\\
\frac{dx_{5}}{dt} = -1 \cdot k_{17} \cdot \left(k_{27} \cdot k_{23} / \left(k_{11} + k_{23}\right) - x_{2}\right) \cdot \left(x_{1} - x_{2}\right) / k_{28}\\
\frac{dx_{6}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{1} - k_{26} \cdot k_{1} \cdot \left(\exp\left(\left(-x_{12}\right) / k_{24}\right) + \exp\left(\left(-x_{12}\right) / k_{25}\right) + \left(\exp\left(\left(-x_{12}\right) / k_{24}\right) - \exp\left(\left(-x_{12}\right) / k_{25}\right)\right) \cdot \left(k_{24} + k_{25}\right) / \left(k_{24} - k_{25}\right)\right)\right) \cdot x_{3} / \left(k_{9} + x_{3}\right) + -1 \cdot k_{3} \cdot x_{6}\right) / k_{29}\\
\frac{dx_{7}}{dt} = -1 \cdot k_{2} \cdot \left(k_{1} - k_{26} \cdot k_{1} \cdot \left(\exp\left(\left(-x_{12}\right) / k_{24}\right) + \exp\left(\left(-x_{12}\right) / k_{25}\right) + \left(\exp\left(\left(-x_{12}\right) / k_{24}\right) - \exp\left(\left(-x_{12}\right) / k_{25}\right)\right) \cdot \left(k_{24} + k_{25}\right) / \left(k_{24} - k_{25}\right)\right)\right) \cdot x_{3} / \left(k_{9} + x_{3}\right) / k_{29}\\
\frac{dx_{8}}{dt} = 1 \cdot k_{3} \cdot x_{6} / k_{29}\\
\frac{dx_{9}}{dt} = \left(1 \cdot k_{21} \cdot x_{3}^{4} / \left(k_{14}^{4} + x_{3}^{4}\right) + 1 \cdot k_{19} \cdot x_{3}^{2} / \left(k_{12}^{2} + x_{3}^{2}\right)\right) / k_{29}\\
\frac{dx_{10}}{dt} = 1 \cdot k_{20} \cdot x_{3} / \left(k_{13} + x_{3}\right) / k_{29}\\
\frac{dx_{11}}{dt} = -1 \cdot k_{22} / k_{29}\\
\frac{dx_{12}}{dt} = 1 \cdot k_{31} / k_{28}\\
\frac{dx_{13}}{dt} = -1 \cdot k_{31} / k_{28}\\
\frac{dx_{14}}{dt} = 0 / k_{28}