\frac{dx_{1}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{3} \cdot k_{10} \cdot x_{2} - x_{1} \cdot x_{3}\right) / \left(1 + k_{10} + x_{2} + x_{1} + x_{3} + k_{10} \cdot x_{2} + x_{1} \cdot x_{3}\right) + -1 \cdot k_{6} \cdot \left(k_{7} \cdot x_{1} - k_{11}\right) / \left(1 + x_{1} + k_{11}\right) + -1 \cdot k_{8} \cdot \left(k_{9} \cdot x_{1} - k_{12}\right) / \left(1 + x_{1} + k_{12}\right)\right) / k_{1}\\ \frac{dx_{2}}{dt} = \left(-1 \cdot k_{2} \cdot \left(k_{3} \cdot k_{10} \cdot x_{2} - x_{1} \cdot x_{3}\right) / \left(1 + k_{10} + x_{2} + x_{1} + x_{3} + k_{10} \cdot x_{2} + x_{1} \cdot x_{3}\right) + 1 \cdot k_{4} \cdot \left(k_{5} \cdot k_{13} \cdot x_{3} - k_{14} \cdot x_{2}\right) / \left(1 + x_{3} + x_{2} + k_{13} + k_{14} + x_{3} \cdot k_{13} + x_{2} \cdot k_{14}\right)\right) / k_{1}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{3} \cdot k_{10} \cdot x_{2} - x_{1} \cdot x_{3}\right) / \left(1 + k_{10} + x_{2} + x_{1} + x_{3} + k_{10} \cdot x_{2} + x_{1} \cdot x_{3}\right) + -1 \cdot k_{4} \cdot \left(k_{5} \cdot k_{13} \cdot x_{3} - k_{14} \cdot x_{2}\right) / \left(1 + x_{3} + x_{2} + k_{13} + k_{14} + x_{3} \cdot k_{13} + x_{2} \cdot k_{14}\right)\right) / k_{1}\\ \frac{dx_{4}}{dt} = 0\\ \frac{dx_{5}}{dt} = 0\\ \frac{dx_{6}}{dt} = 0\\ \frac{dx_{7}}{dt} = 0\\ \frac{dx_{8}}{dt} = 0