\frac{dx_{1}}{dt} = \left(1 \cdot k_{4} \cdot k_{1} / \left(k_{6}^{k_{3}} + x_{2}^{k_{3}}\right) + -1 \cdot k_{4} \cdot x_{1} / k_{2} / \left(1 + x_{1} / k_{2}\right)\right) / k_{4}\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{4} \cdot k_{1} / \left(k_{7}^{k_{3}} + x_{3}^{k_{3}}\right) + -1 \cdot k_{4} \cdot x_{2} / k_{2} / \left(1 + x_{2} / k_{2}\right)\right) / k_{4}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{4} \cdot k_{1} / \left(k_{5}^{k_{3}} + x_{1}^{k_{3}}\right) + -1 \cdot k_{4} \cdot x_{3} / k_{2} / \left(1 + x_{3} / k_{2}\right)\right) / k_{4}