\frac{dx_{1}}{dt} = \left(1 \cdot k_{6} \cdot x_{5} + -1 \cdot k_{7} \cdot x_{1} + -1 \cdot \left(k_{8} \cdot x_{1} - k_{9} \cdot x_{3}\right)\right) / k_{19}\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{10} \cdot x_{5} + -1 \cdot k_{11} \cdot x_{2} + -1 \cdot \left(k_{12} \cdot x_{2} - k_{13} \cdot x_{4}\right)\right) / k_{19}\\ \frac{dx_{3}}{dt} = 1 \cdot \left(k_{8} \cdot x_{1} - k_{9} \cdot x_{3}\right) / k_{18}\\ \frac{dx_{4}}{dt} = 1 \cdot \left(k_{12} \cdot x_{2} - k_{13} \cdot x_{4}\right) / k_{18}\\ \frac{dx_{5}}{dt} = \left(1 \cdot \left(k_{1} + k_{14} \cdot \left(1 + \tanh\left(2 \cdot \left(t - 24 \cdot \lfloor t / 24 \rfloor - k_{15}\right)\right)\right) \cdot \left(1 - \tanh\left(2 \cdot \left(t - 24 \cdot \lfloor t / 24 \rfloor - k_{16}\right)\right)\right) / 4\right) \cdot k_{2}^{k_{3}} / \left(k_{2}^{k_{3}} + x_{3} + x_{4}^{k_{3}}\right) + -1 \cdot k_{4} \cdot x_{5} / \left(k_{5} + x_{5}\right)\right) / k_{18}