\frac{dx_{1}}{dt} = 0 / k_{22}\\ \frac{dx_{2}}{dt} = \left(1 \cdot 1 / k_{2} \cdot x_{1} + -1 \cdot 1 / k_{2} \cdot x_{2} + -1 \cdot k_{4} \cdot 365 / k_{9} \cdot \left(x_{3} + x_{7}\right) / x_{1} \cdot x_{2} + -1 \cdot k_{7} \cdot 365 / k_{10} \cdot \left(x_{4} + x_{8}\right) / x_{1} \cdot x_{2} + 1 \cdot 1 / k_{12} \cdot x_{5} + 1 \cdot 1 / k_{12} \cdot x_{6} + 1 \cdot 1 / k_{12} \cdot x_{9}\right) / k_{22}\\ \frac{dx_{3}}{dt} = \left(-1 \cdot 1 / k_{2} \cdot x_{3} + 1 \cdot k_{4} \cdot 365 / k_{9} \cdot \left(x_{3} + x_{7}\right) / x_{1} \cdot x_{2} + -1 \cdot 365 / k_{9} \cdot x_{3}\right) / k_{22}\\ \frac{dx_{4}}{dt} = \left(-1 \cdot 1 / k_{2} \cdot x_{4} + 1 \cdot k_{7} \cdot 365 / k_{10} \cdot \left(x_{4} + x_{8}\right) / x_{1} \cdot x_{2} + -1 \cdot 365 / k_{10} \cdot x_{4}\right) / k_{22}\\ \frac{dx_{5}}{dt} = \left(-1 \cdot 1 / k_{2} \cdot x_{5} + -1 \cdot \left(1 - k_{21}\right) \cdot k_{7} \cdot 365 / k_{10} \cdot \left(x_{4} + x_{8}\right) / x_{1} \cdot x_{5} + 1 \cdot 365 / k_{9} \cdot x_{3} + -1 \cdot 1 / k_{12} \cdot x_{5}\right) / k_{22}\\ \frac{dx_{6}}{dt} = \left(-1 \cdot 1 / k_{2} \cdot x_{6} + -1 \cdot \left(1 - k_{21}\right) \cdot k_{4} \cdot 365 / k_{9} \cdot \left(x_{3} + x_{7}\right) / x_{1} \cdot x_{6} + 1 \cdot 365 / k_{10} \cdot x_{4} + -1 \cdot 1 / k_{12} \cdot x_{6}\right) / k_{22}\\ \frac{dx_{7}}{dt} = \left(-1 \cdot 1 / k_{2} \cdot x_{7} + 1 \cdot \left(1 - k_{21}\right) \cdot k_{4} \cdot 365 / k_{9} \cdot \left(x_{3} + x_{7}\right) / x_{1} \cdot x_{6} + -1 \cdot 365 / k_{9} \cdot x_{7}\right) / k_{22}\\ \frac{dx_{8}}{dt} = \left(-1 \cdot 1 / k_{2} \cdot x_{8} + 1 \cdot \left(1 - k_{21}\right) \cdot k_{7} \cdot 365 / k_{10} \cdot \left(x_{4} + x_{8}\right) / x_{1} \cdot x_{5} + -1 \cdot 365 / k_{10} \cdot x_{8}\right) / k_{22}\\ \frac{dx_{9}}{dt} = \left(-1 \cdot 1 / k_{2} \cdot x_{9} + 1 \cdot 365 / k_{9} \cdot x_{7} + 1 \cdot 365 / k_{10} \cdot x_{8} + -1 \cdot 1 / k_{12} \cdot x_{9}\right) / k_{22}