\frac{dx_{1}}{dt} = \left(1 \cdot k_{13} \cdot k_{2} \cdot k_{1} \cdot \left(k_{101} - x_{1}\right) / k_{14} / \left(1 + \left(k_{101} + x_{1}\right) / k_{14} + k_{15} \cdot k_{101} \cdot x_{1} / k_{14}^{2}\right) + -1 \cdot k_{12} \cdot k_{1} \cdot k_{3} \cdot k_{16} \cdot \left(x_{1} \cdot x_{2} / \left(k_{17} \cdot k_{18}\right) - x_{3} \cdot x_{4} / \left(k_{17} \cdot k_{18} \cdot k_{19}\right)\right) / \left(\left(1 + x_{1} / k_{17} + x_{3} / k_{20}\right) \cdot \left(1 + x_{2} / k_{18} + x_{4} / k_{21}\right)\right)\right) / k_{12}\\ \frac{dx_{2}}{dt} = \left(-1 \cdot k_{12} \cdot k_{1} \cdot k_{3} \cdot k_{16} \cdot \left(x_{1} \cdot x_{2} / \left(k_{17} \cdot k_{18}\right) - x_{3} \cdot x_{4} / \left(k_{17} \cdot k_{18} \cdot k_{19}\right)\right) / \left(\left(1 + x_{1} / k_{17} + x_{3} / k_{20}\right) \cdot \left(1 + x_{2} / k_{18} + x_{4} / k_{21}\right)\right) + -1 \cdot k_{12} \cdot k_{26} \cdot k_{6} \cdot k_{1} \cdot k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29} \cdot \left(1 + x_{5} / k_{28} + x_{2} / k_{29} + k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29}\right) / \left(1 + x_{5} / k_{28} + x_{2} / k_{29} + k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29}^{2} + k_{30} \cdot \left(1 + k_{31} \cdot x_{2} / k_{32}\right) / \left(1 + x_{2} / k_{32}\right)^{2} \cdot \left(1 + k_{33} \cdot x_{8} / k_{34}\right) / \left(1 + x_{8} / k_{34}\right)^{2} \cdot \left(1 + k_{35} \cdot k_{100} / k_{36} + k_{37} \cdot x_{6} / k_{38}\right) / \left(1 + k_{100} / k_{36} + x_{6} / k_{38}\right)^{2} \cdot 1 + k_{39} \cdot x_{2} / k_{29}^{2}\right) + 1 \cdot k_{12} \cdot k_{9} \cdot k_{55} \cdot k_{1} \cdot \left(k_{56} \cdot x_{12} \cdot x_{4} - x_{14} \cdot x_{2}\right) / \left(k_{57} \cdot k_{58}\right) / \left(\left(1 + x_{12} / k_{59} + x_{14} / k_{57}\right) \cdot \left(1 + x_{4} / k_{60} + x_{2} / k_{58}\right)\right) + 1 \cdot k_{12} \cdot k_{69} \cdot k_{8} \cdot k_{1} \cdot \left(x_{16} \cdot x_{4} / \left(k_{70} \cdot k_{71}\right) - x_{17} \cdot x_{2} / \left(k_{70} \cdot k_{71} \cdot k_{72}\right)\right) / \left(\left(1 + x_{16} / k_{70} + x_{17} / k_{73}\right) \cdot \left(1 + x_{4} / k_{71} + x_{2} / k_{74}\right)\right) + -1 \cdot k_{12} \cdot k_{88} \cdot x_{2} + 1 \cdot k_{12} \cdot \left(k_{89} \cdot x_{4} \cdot x_{4} - k_{90} \cdot x_{2} \cdot x_{8}\right) + -1 \cdot k_{12} \cdot k_{97} + -1 \cdot k_{12} \cdot k_{98}\right) / k_{12}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{12} \cdot k_{1} \cdot k_{3} \cdot k_{16} \cdot \left(x_{1} \cdot x_{2} / \left(k_{17} \cdot k_{18}\right) - x_{3} \cdot x_{4} / \left(k_{17} \cdot k_{18} \cdot k_{19}\right)\right) / \left(\left(1 + x_{1} / k_{17} + x_{3} / k_{20}\right) \cdot \left(1 + x_{2} / k_{18} + x_{4} / k_{21}\right)\right) + -1 \cdot k_{12} \cdot k_{22} \cdot k_{11} \cdot k_{1} \cdot \left(x_{3} / k_{23} - x_{5} / \left(k_{23} \cdot k_{24}\right)\right) / \left(1 + x_{3} / k_{23} + x_{5} / k_{25}\right) + -1 \cdot k_{12} \cdot k_{97} + -2 \cdot k_{12} \cdot k_{98}\right) / k_{12}\\ \frac{dx_{4}}{dt} = \left(1 \cdot k_{12} \cdot k_{1} \cdot k_{3} \cdot k_{16} \cdot \left(x_{1} \cdot x_{2} / \left(k_{17} \cdot k_{18}\right) - x_{3} \cdot x_{4} / \left(k_{17} \cdot k_{18} \cdot k_{19}\right)\right) / \left(\left(1 + x_{1} / k_{17} + x_{3} / k_{20}\right) \cdot \left(1 + x_{2} / k_{18} + x_{4} / k_{21}\right)\right) + 1 \cdot k_{12} \cdot k_{26} \cdot k_{6} \cdot k_{1} \cdot k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29} \cdot \left(1 + x_{5} / k_{28} + x_{2} / k_{29} + k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29}\right) / \left(1 + x_{5} / k_{28} + x_{2} / k_{29} + k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29}^{2} + k_{30} \cdot \left(1 + k_{31} \cdot x_{2} / k_{32}\right) / \left(1 + x_{2} / k_{32}\right)^{2} \cdot \left(1 + k_{33} \cdot x_{8} / k_{34}\right) / \left(1 + x_{8} / k_{34}\right)^{2} \cdot \left(1 + k_{35} \cdot k_{100} / k_{36} + k_{37} \cdot x_{6} / k_{38}\right) / \left(1 + k_{100} / k_{36} + x_{6} / k_{38}\right)^{2} \cdot 1 + k_{39} \cdot x_{2} / k_{29}^{2}\right) + -1 \cdot k_{12} \cdot k_{9} \cdot k_{55} \cdot k_{1} \cdot \left(k_{56} \cdot x_{12} \cdot x_{4} - x_{14} \cdot x_{2}\right) / \left(k_{57} \cdot k_{58}\right) / \left(\left(1 + x_{12} / k_{59} + x_{14} / k_{57}\right) \cdot \left(1 + x_{4} / k_{60} + x_{2} / k_{58}\right)\right) + -1 \cdot k_{12} \cdot k_{69} \cdot k_{8} \cdot k_{1} \cdot \left(x_{16} \cdot x_{4} / \left(k_{70} \cdot k_{71}\right) - x_{17} \cdot x_{2} / \left(k_{70} \cdot k_{71} \cdot k_{72}\right)\right) / \left(\left(1 + x_{16} / k_{70} + x_{17} / k_{73}\right) \cdot \left(1 + x_{4} / k_{71} + x_{2} / k_{74}\right)\right) + 1 \cdot k_{12} \cdot k_{88} \cdot x_{2} + -2 \cdot k_{12} \cdot \left(k_{89} \cdot x_{4} \cdot x_{4} - k_{90} \cdot x_{2} \cdot x_{8}\right) + 1 \cdot k_{12} \cdot k_{97} + 1 \cdot k_{12} \cdot k_{98}\right) / k_{12}\\ \frac{dx_{5}}{dt} = \left(1 \cdot k_{12} \cdot k_{22} \cdot k_{11} \cdot k_{1} \cdot \left(x_{3} / k_{23} - x_{5} / \left(k_{23} \cdot k_{24}\right)\right) / \left(1 + x_{3} / k_{23} + x_{5} / k_{25}\right) + -1 \cdot k_{12} \cdot k_{26} \cdot k_{6} \cdot k_{1} \cdot k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29} \cdot \left(1 + x_{5} / k_{28} + x_{2} / k_{29} + k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29}\right) / \left(1 + x_{5} / k_{28} + x_{2} / k_{29} + k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29}^{2} + k_{30} \cdot \left(1 + k_{31} \cdot x_{2} / k_{32}\right) / \left(1 + x_{2} / k_{32}\right)^{2} \cdot \left(1 + k_{33} \cdot x_{8} / k_{34}\right) / \left(1 + x_{8} / k_{34}\right)^{2} \cdot \left(1 + k_{35} \cdot k_{100} / k_{36} + k_{37} \cdot x_{6} / k_{38}\right) / \left(1 + k_{100} / k_{36} + x_{6} / k_{38}\right)^{2} \cdot 1 + k_{39} \cdot x_{2} / k_{29}^{2}\right)\right) / k_{12}\\ \frac{dx_{6}}{dt} = \left(1 \cdot k_{12} \cdot k_{26} \cdot k_{6} \cdot k_{1} \cdot k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29} \cdot \left(1 + x_{5} / k_{28} + x_{2} / k_{29} + k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29}\right) / \left(1 + x_{5} / k_{28} + x_{2} / k_{29} + k_{27} \cdot x_{5} / k_{28} \cdot x_{2} / k_{29}^{2} + k_{30} \cdot \left(1 + k_{31} \cdot x_{2} / k_{32}\right) / \left(1 + x_{2} / k_{32}\right)^{2} \cdot \left(1 + k_{33} \cdot x_{8} / k_{34}\right) / \left(1 + x_{8} / k_{34}\right)^{2} \cdot \left(1 + k_{35} \cdot k_{100} / k_{36} + k_{37} \cdot x_{6} / k_{38}\right) / \left(1 + k_{100} / k_{36} + x_{6} / k_{38}\right)^{2} \cdot 1 + k_{39} \cdot x_{2} / k_{29}^{2}\right) + -1 \cdot k_{12} \cdot k_{40} \cdot k_{7} \cdot k_{1} \cdot \left(x_{6} / k_{41} - x_{9} \cdot x_{10} / \left(k_{41} \cdot k_{42}\right)\right) / \left(1 + x_{6} / k_{41} + x_{9} / k_{43} + x_{10} / k_{44} + x_{6} \cdot x_{10} / \left(k_{41} \cdot k_{45}\right) + x_{9} \cdot x_{10} / \left(k_{43} \cdot k_{44}\right)\right)\right) / k_{12}\\ \frac{dx_{7}}{dt} = 0\\ \frac{dx_{8}}{dt} = 1 \cdot k_{12} \cdot \left(k_{89} \cdot x_{4} \cdot x_{4} - k_{90} \cdot x_{2} \cdot x_{8}\right) / k_{12}\\ \frac{dx_{9}}{dt} = \left(1 \cdot k_{12} \cdot k_{40} \cdot k_{7} \cdot k_{1} \cdot \left(x_{6} / k_{41} - x_{9} \cdot x_{10} / \left(k_{41} \cdot k_{42}\right)\right) / \left(1 + x_{6} / k_{41} + x_{9} / k_{43} + x_{10} / k_{44} + x_{6} \cdot x_{10} / \left(k_{41} \cdot k_{45}\right) + x_{9} \cdot x_{10} / \left(k_{43} \cdot k_{44}\right)\right) + -1 \cdot k_{12} \cdot \left(k_{46} \cdot x_{9} - k_{47} \cdot x_{10}\right) + -1 \cdot k_{12} \cdot k_{91} \cdot k_{1} \cdot \left(x_{9} / k_{92} \cdot x_{13} / k_{93} - k_{104} / k_{92} \cdot x_{11} / k_{93} \cdot 1 / k_{94}\right) / \left(\left(1 + x_{9} / k_{92} + k_{104} / k_{95}\right) \cdot \left(1 + x_{13} / k_{93} + x_{11} / k_{96}\right)\right)\right) / k_{12}\\ \frac{dx_{10}}{dt} = \left(1 \cdot k_{12} \cdot k_{40} \cdot k_{7} \cdot k_{1} \cdot \left(x_{6} / k_{41} - x_{9} \cdot x_{10} / \left(k_{41} \cdot k_{42}\right)\right) / \left(1 + x_{6} / k_{41} + x_{9} / k_{43} + x_{10} / k_{44} + x_{6} \cdot x_{10} / \left(k_{41} \cdot k_{45}\right) + x_{9} \cdot x_{10} / \left(k_{43} \cdot k_{44}\right)\right) + 1 \cdot k_{12} \cdot \left(k_{46} \cdot x_{9} - k_{47} \cdot x_{10}\right) + -1 \cdot k_{12} \cdot k_{48} \cdot \left(k_{49} \cdot k_{4} \cdot k_{1} \cdot x_{10} \cdot x_{11} / \left(k_{50} \cdot k_{51}\right) - k_{52} \cdot k_{4} \cdot k_{1} \cdot x_{12} \cdot x_{13} / \left(k_{53} \cdot k_{54}\right)\right) / \left(\left(1 + x_{10} / k_{50} + x_{12} / k_{53}\right) \cdot \left(1 + x_{11} / k_{51} + x_{13} / k_{54}\right)\right)\right) / k_{12}\\ \frac{dx_{11}}{dt} = \left(-1 \cdot k_{12} \cdot k_{48} \cdot \left(k_{49} \cdot k_{4} \cdot k_{1} \cdot x_{10} \cdot x_{11} / \left(k_{50} \cdot k_{51}\right) - k_{52} \cdot k_{4} \cdot k_{1} \cdot x_{12} \cdot x_{13} / \left(k_{53} \cdot k_{54}\right)\right) / \left(\left(1 + x_{10} / k_{50} + x_{12} / k_{53}\right) \cdot \left(1 + x_{11} / k_{51} + x_{13} / k_{54}\right)\right) + -1 \cdot k_{12} \cdot k_{78} \cdot k_{1} \cdot \left(k_{103} \cdot x_{11} / \left(k_{79} \cdot k_{80}\right) - x_{18} \cdot x_{13} / \left(k_{79} \cdot k_{80} \cdot k_{81}\right)\right) / \left(1 + x_{11} / k_{80} + k_{103} \cdot k_{82} / \left(k_{80} \cdot k_{79}\right) + x_{18} \cdot k_{83} / \left(k_{84} \cdot k_{85}\right) + x_{13} / k_{84} + k_{103} \cdot x_{11} / \left(k_{80} \cdot k_{79}\right) + x_{11} \cdot x_{18} \cdot k_{83} / \left(k_{80} \cdot k_{84} \cdot k_{85}\right) + k_{103} \cdot x_{13} \cdot k_{82} / \left(k_{80} \cdot k_{84} \cdot k_{79}\right) + x_{18} \cdot x_{13} / \left(k_{85} \cdot k_{84}\right) + k_{103} \cdot x_{11} \cdot x_{18} / \left(k_{80} \cdot k_{86} \cdot k_{79}\right) + k_{103} \cdot x_{18} \cdot x_{13} / \left(k_{87} \cdot k_{84} \cdot k_{85}\right)\right) + 1 \cdot k_{12} \cdot k_{91} \cdot k_{1} \cdot \left(x_{9} / k_{92} \cdot x_{13} / k_{93} - k_{104} / k_{92} \cdot x_{11} / k_{93} \cdot 1 / k_{94}\right) / \left(\left(1 + x_{9} / k_{92} + k_{104} / k_{95}\right) \cdot \left(1 + x_{13} / k_{93} + x_{11} / k_{96}\right)\right) + -3 \cdot k_{12} \cdot k_{99} \cdot x_{18}\right) / k_{12}\\ \frac{dx_{12}}{dt} = \left(1 \cdot k_{12} \cdot k_{48} \cdot \left(k_{49} \cdot k_{4} \cdot k_{1} \cdot x_{10} \cdot x_{11} / \left(k_{50} \cdot k_{51}\right) - k_{52} \cdot k_{4} \cdot k_{1} \cdot x_{12} \cdot x_{13} / \left(k_{53} \cdot k_{54}\right)\right) / \left(\left(1 + x_{10} / k_{50} + x_{12} / k_{53}\right) \cdot \left(1 + x_{11} / k_{51} + x_{13} / k_{54}\right)\right) + -1 \cdot k_{12} \cdot k_{9} \cdot k_{55} \cdot k_{1} \cdot \left(k_{56} \cdot x_{12} \cdot x_{4} - x_{14} \cdot x_{2}\right) / \left(k_{57} \cdot k_{58}\right) / \left(\left(1 + x_{12} / k_{59} + x_{14} / k_{57}\right) \cdot \left(1 + x_{4} / k_{60} + x_{2} / k_{58}\right)\right)\right) / k_{12}\\ \frac{dx_{13}}{dt} = \left(1 \cdot k_{12} \cdot k_{48} \cdot \left(k_{49} \cdot k_{4} \cdot k_{1} \cdot x_{10} \cdot x_{11} / \left(k_{50} \cdot k_{51}\right) - k_{52} \cdot k_{4} \cdot k_{1} \cdot x_{12} \cdot x_{13} / \left(k_{53} \cdot k_{54}\right)\right) / \left(\left(1 + x_{10} / k_{50} + x_{12} / k_{53}\right) \cdot \left(1 + x_{11} / k_{51} + x_{13} / k_{54}\right)\right) + 1 \cdot k_{12} \cdot k_{78} \cdot k_{1} \cdot \left(k_{103} \cdot x_{11} / \left(k_{79} \cdot k_{80}\right) - x_{18} \cdot x_{13} / \left(k_{79} \cdot k_{80} \cdot k_{81}\right)\right) / \left(1 + x_{11} / k_{80} + k_{103} \cdot k_{82} / \left(k_{80} \cdot k_{79}\right) + x_{18} \cdot k_{83} / \left(k_{84} \cdot k_{85}\right) + x_{13} / k_{84} + k_{103} \cdot x_{11} / \left(k_{80} \cdot k_{79}\right) + x_{11} \cdot x_{18} \cdot k_{83} / \left(k_{80} \cdot k_{84} \cdot k_{85}\right) + k_{103} \cdot x_{13} \cdot k_{82} / \left(k_{80} \cdot k_{84} \cdot k_{79}\right) + x_{18} \cdot x_{13} / \left(k_{85} \cdot k_{84}\right) + k_{103} \cdot x_{11} \cdot x_{18} / \left(k_{80} \cdot k_{86} \cdot k_{79}\right) + k_{103} \cdot x_{18} \cdot x_{13} / \left(k_{87} \cdot k_{84} \cdot k_{85}\right)\right) + -1 \cdot k_{12} \cdot k_{91} \cdot k_{1} \cdot \left(x_{9} / k_{92} \cdot x_{13} / k_{93} - k_{104} / k_{92} \cdot x_{11} / k_{93} \cdot 1 / k_{94}\right) / \left(\left(1 + x_{9} / k_{92} + k_{104} / k_{95}\right) \cdot \left(1 + x_{13} / k_{93} + x_{11} / k_{96}\right)\right) + 3 \cdot k_{12} \cdot k_{99} \cdot x_{18}\right) / k_{12}\\ \frac{dx_{14}}{dt} = \left(1 \cdot k_{12} \cdot k_{9} \cdot k_{55} \cdot k_{1} \cdot \left(k_{56} \cdot x_{12} \cdot x_{4} - x_{14} \cdot x_{2}\right) / \left(k_{57} \cdot k_{58}\right) / \left(\left(1 + x_{12} / k_{59} + x_{14} / k_{57}\right) \cdot \left(1 + x_{4} / k_{60} + x_{2} / k_{58}\right)\right) + -1 \cdot k_{12} \cdot k_{61} \cdot k_{10} \cdot k_{1} \cdot \left(x_{14} / k_{62} - x_{15} / \left(k_{62} \cdot k_{63}\right)\right) / \left(1 + x_{14} / k_{62} + x_{15} / k_{64}\right)\right) / k_{12}\\ \frac{dx_{15}}{dt} = \left(1 \cdot k_{12} \cdot k_{61} \cdot k_{10} \cdot k_{1} \cdot \left(x_{14} / k_{62} - x_{15} / \left(k_{62} \cdot k_{63}\right)\right) / \left(1 + x_{14} / k_{62} + x_{15} / k_{64}\right) + -1 \cdot k_{12} \cdot k_{65} \cdot k_{5} \cdot k_{1} \cdot \left(x_{15} / k_{66} - x_{16} / \left(k_{66} \cdot k_{67}\right)\right) / \left(1 + x_{15} / k_{66} + x_{16} / k_{68}\right)\right) / k_{12}\\ \frac{dx_{16}}{dt} = \left(1 \cdot k_{12} \cdot k_{65} \cdot k_{5} \cdot k_{1} \cdot \left(x_{15} / k_{66} - x_{16} / \left(k_{66} \cdot k_{67}\right)\right) / \left(1 + x_{15} / k_{66} + x_{16} / k_{68}\right) + -1 \cdot k_{12} \cdot k_{69} \cdot k_{8} \cdot k_{1} \cdot \left(x_{16} \cdot x_{4} / \left(k_{70} \cdot k_{71}\right) - x_{17} \cdot x_{2} / \left(k_{70} \cdot k_{71} \cdot k_{72}\right)\right) / \left(\left(1 + x_{16} / k_{70} + x_{17} / k_{73}\right) \cdot \left(1 + x_{4} / k_{71} + x_{2} / k_{74}\right)\right)\right) / k_{12}\\ \frac{dx_{17}}{dt} = \left(1 \cdot k_{12} \cdot k_{69} \cdot k_{8} \cdot k_{1} \cdot \left(x_{16} \cdot x_{4} / \left(k_{70} \cdot k_{71}\right) - x_{17} \cdot x_{2} / \left(k_{70} \cdot k_{71} \cdot k_{72}\right)\right) / \left(\left(1 + x_{16} / k_{70} + x_{17} / k_{73}\right) \cdot \left(1 + x_{4} / k_{71} + x_{2} / k_{74}\right)\right) + -1 \cdot k_{12} \cdot k_{75} \cdot k_{1} \cdot x_{17} / k_{76}^{k_{77}} / \left(1 + x_{17} / k_{76}^{k_{77}}\right)\right) / k_{12}\\ \frac{dx_{18}}{dt} = \left(1 \cdot k_{12} \cdot k_{75} \cdot k_{1} \cdot x_{17} / k_{76}^{k_{77}} / \left(1 + x_{17} / k_{76}^{k_{77}}\right) + 1 \cdot k_{12} \cdot k_{78} \cdot k_{1} \cdot \left(k_{103} \cdot x_{11} / \left(k_{79} \cdot k_{80}\right) - x_{18} \cdot x_{13} / \left(k_{79} \cdot k_{80} \cdot k_{81}\right)\right) / \left(1 + x_{11} / k_{80} + k_{103} \cdot k_{82} / \left(k_{80} \cdot k_{79}\right) + x_{18} \cdot k_{83} / \left(k_{84} \cdot k_{85}\right) + x_{13} / k_{84} + k_{103} \cdot x_{11} / \left(k_{80} \cdot k_{79}\right) + x_{11} \cdot x_{18} \cdot k_{83} / \left(k_{80} \cdot k_{84} \cdot k_{85}\right) + k_{103} \cdot x_{13} \cdot k_{82} / \left(k_{80} \cdot k_{84} \cdot k_{79}\right) + x_{18} \cdot x_{13} / \left(k_{85} \cdot k_{84}\right) + k_{103} \cdot x_{11} \cdot x_{18} / \left(k_{80} \cdot k_{86} \cdot k_{79}\right) + k_{103} \cdot x_{18} \cdot x_{13} / \left(k_{87} \cdot k_{84} \cdot k_{85}\right)\right) + -2 \cdot k_{12} \cdot k_{99} \cdot x_{18}\right) / k_{12}\\ \frac{dx_{19}}{dt} = 0\\ \frac{dx_{20}}{dt} = 0\\ \frac{dx_{21}}{dt} = 0\\ \frac{dx_{22}}{dt} = 0\\ \frac{dx_{23}}{dt} = 0\\ \frac{dx_{24}}{dt} = 0\\ \frac{dx_{25}}{dt} = 0