\frac{dx_{1}}{dt} = \left(-1 \cdot k_{8} \cdot x_{3} \cdot x_{1} \cdot 1 / \left(k_{9} + x_{1}\right) \cdot k_{2} + -1 \cdot k_{1} \cdot k_{14} \cdot x_{6} \cdot 1 / \left(k_{15} + x_{6}\right) \cdot k_{3} + -1 \cdot k_{1} \cdot k_{16} \cdot x_{1} \cdot 1 / \left(k_{17} + x_{1}\right) \cdot k_{3}\right) / k_{2}\\ \frac{dx_{2}}{dt} = \left(-2 \cdot \left(k_{4} \cdot x_{2}^{2} + \left(-k_{5} \cdot x_{4}\right)\right) \cdot k_{2} + 1 \cdot k_{8} \cdot x_{3} \cdot x_{1} \cdot 1 / \left(k_{9} + x_{1}\right) \cdot k_{2}\right) / k_{2}\\ \frac{dx_{4}}{dt} = \left(1 \cdot \left(k_{4} \cdot x_{2}^{2} + \left(-k_{5} \cdot x_{4}\right)\right) \cdot k_{2} + -1 \cdot k_{12} \cdot x_{4} \cdot 1 / \left(k_{13} + x_{4}\right) \cdot k_{3}\right) / k_{2}\\ \frac{dx_{5}}{dt} = \left(1 \cdot \left(k_{10} \cdot x_{7}^{2} + \left(-k_{11} \cdot x_{5}\right)\right) \cdot k_{1} + 1 \cdot k_{12} \cdot x_{4} \cdot 1 / \left(k_{13} + x_{4}\right) \cdot k_{3}\right) / k_{1}\\ \frac{dx_{6}}{dt} = \left(1 \cdot k_{6} \cdot x_{8} \cdot x_{7} \cdot 1 / \left(k_{7} + x_{7}\right) \cdot k_{1} + 1 \cdot k_{1} \cdot k_{14} \cdot x_{6} \cdot 1 / \left(k_{15} + x_{6}\right) \cdot k_{3} + 1 \cdot k_{1} \cdot k_{16} \cdot x_{1} \cdot 1 / \left(k_{17} + x_{1}\right) \cdot k_{3}\right) / k_{1}\\ \frac{dx_{7}}{dt} = \left(-1 \cdot k_{6} \cdot x_{8} \cdot x_{7} \cdot 1 / \left(k_{7} + x_{7}\right) \cdot k_{1} + -2 \cdot \left(k_{10} \cdot x_{7}^{2} + \left(-k_{11} \cdot x_{5}\right)\right) \cdot k_{1}\right) / k_{1}\\ \frac{dx_{8}}{dt} = 0 / k_{1}\\ \frac{dx_{9}}{dt} = 1 \cdot k_{8} \cdot x_{3} \cdot x_{1} \cdot 1 / \left(k_{9} + x_{1}\right) \cdot k_{2} / k_{2}