\frac{dx_{1}}{dt} = \left(1 \cdot k_{3} \cdot \left(1 + k_{4} \cdot x_{3}^{4} / \left(k_{5}^{4} + x_{3}^{4}\right)\right) \cdot x_{1}^{2} / \left(x_{1}^{2} + k_{7} / \left(1 + x_{3}^{4} / k_{6}^{4}\right)\right) + -1 \cdot k_{10} \cdot x_{1} + 1 \cdot k_{11}\right) / k_{8}\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{15} \cdot x_{3}^{k_{17}} / \left(k_{16}^{k_{17}} + x_{3}^{k_{17}}\right) + -1 \cdot k_{18} \cdot x_{2}^{k_{21}} / \left(k_{19}^{k_{21}} + x_{2}^{k_{21}}\right) \cdot x_{3}^{k_{22}} / \left(k_{20}^{k_{22}} + x_{3}^{k_{22}}\right) + -1 \cdot k_{23} \cdot x_{2}\right) / k_{9}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{12} + 1 \cdot k_{13} \cdot k_{14} + -1 \cdot k_{15} \cdot x_{3}^{k_{17}} / \left(k_{16}^{k_{17}} + x_{3}^{k_{17}}\right) + 1 \cdot k_{18} \cdot x_{2}^{k_{21}} / \left(k_{19}^{k_{21}} + x_{2}^{k_{21}}\right) \cdot x_{3}^{k_{22}} / \left(k_{20}^{k_{22}} + x_{3}^{k_{22}}\right) + 1 \cdot k_{23} \cdot x_{2} + -1 \cdot k_{24} \cdot x_{3}\right) / k_{8}