\frac{dx_{1}}{dt} = 0\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{31} \cdot \left(k_{1} + k_{2} \cdot k_{3}\right) + -1 \cdot k_{32} \cdot k_{4} \cdot x_{2}^{2} / \left(k_{5}^{2} + x_{2}^{2}\right) + 1 \cdot k_{33} \cdot k_{6} \cdot x_{3}^{4} \cdot x_{4}^{2} \cdot x_{2}^{k_{7}} / \left(\left(k_{8}^{4} + x_{3}^{4}\right) \cdot \left(k_{9}^{2} + x_{4}^{2}\right) \cdot \left(k_{10}^{k_{7}} + x_{2}^{k_{7}}\right)\right) + 1 \cdot k_{33} \cdot k_{11} \cdot x_{4} + -1 \cdot k_{32} \cdot k_{12} \cdot x_{2}\right) / k_{32}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{32} \cdot k_{3} \cdot k_{13} + -1 \cdot k_{32} \cdot k_{14} \cdot x_{3}^{k_{30}} \cdot x_{2}^{k_{15}} / \left(\left(k_{16}^{k_{30}} + x_{3}^{k_{30}}\right) \cdot \left(k_{17}^{k_{15}} + x_{2}^{k_{15}}\right)\right) + -1 \cdot k_{32} \cdot k_{18} \cdot x_{3}\right) / k_{32}\\ \frac{dx_{4}}{dt} = \left(1 \cdot k_{32} \cdot k_{4} \cdot x_{2}^{2} / \left(k_{5}^{2} + x_{2}^{2}\right) + -1 \cdot k_{33} \cdot k_{6} \cdot x_{3}^{4} \cdot x_{4}^{2} \cdot x_{2}^{k_{7}} / \left(\left(k_{8}^{4} + x_{3}^{4}\right) \cdot \left(k_{9}^{2} + x_{4}^{2}\right) \cdot \left(k_{10}^{k_{7}} + x_{2}^{k_{7}}\right)\right) + -1 \cdot k_{33} \cdot k_{11} \cdot x_{4}\right) / k_{33}\\ \frac{dx_{5}}{dt} = \left(1 \cdot k_{32} \cdot k_{19} \cdot \left(1 + k_{20} \cdot x_{2}^{4} / \left(k_{21}^{4} + x_{2}^{4}\right)\right) \cdot \left(1 - x_{5}\right) / \left(k_{22} / \left(1 + x_{2}^{4} / k_{23}^{4}\right) + 1 - x_{5}\right) + -1 \cdot k_{32} \cdot k_{24} \cdot \left(1 + k_{25} \cdot k_{26} / \left(k_{27} + k_{26}\right)\right) \cdot x_{5} / \left(k_{28} / \left(1 + k_{26} / k_{29}\right) + x_{5}\right)\right) / k_{32}