\frac{dx_{1}}{dt} = \left(-1 \cdot k_{33} \cdot x_{12} \cdot x_{1} \cdot k_{26} + 1 \cdot \left(k_{12} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{2} \cdot x_{6} + \left(-k_{12} \cdot k_{13} \cdot x_{1}\right)\right) \cdot k_{26}\right) / k_{26}\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{33} \cdot x_{12} \cdot x_{1} \cdot k_{26} + -1 \cdot \left(k_{12} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{2} \cdot x_{6} + \left(-k_{12} \cdot k_{13} \cdot x_{1}\right)\right) \cdot k_{26} + -1 \cdot k_{27} \cdot \left(k_{22} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{13} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{2} + \left(-k_{22} \cdot k_{23} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{5}\right)\right) \cdot 1 \cdot 1 / k_{1}\right) / k_{27}\\ \frac{dx_{3}}{dt} = -1 \cdot k_{26} \cdot \left(\operatorname{piecewise}(\frac{581}{1000} \cdot k_{3} \cdot \left(\left(-1\right) + \exp\left(\left(k_{2} + \left(-x_{7}\right)\right) \cdot 1 / k_{2}\right)\right), x_{7} < k_{2}, 0) + \operatorname{piecewise}(k_{4} \cdot \exp\left(-\left(t + \left(-k_{5}\right)\right) \cdot 1 / k_{6}\right), t > k_{5}, 0)\right) \cdot x_{3} / k_{26}\\ \frac{dx_{4}}{dt} = 0\\ \frac{dx_{5}}{dt} = 1 \cdot k_{27} \cdot \left(k_{22} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{13} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{2} + \left(-k_{22} \cdot k_{23} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{5}\right)\right) \cdot 1 \cdot 1 / k_{1} / k_{27}\\ \frac{dx_{6}}{dt} = \left(-1 \cdot k_{30} \cdot x_{6} \cdot x_{12} \cdot k_{26} + -1 \cdot \left(k_{12} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{2} \cdot x_{6} + \left(-k_{12} \cdot k_{13} \cdot x_{1}\right)\right) \cdot k_{26} + 1 \cdot k_{26} \cdot \left(\operatorname{piecewise}(\frac{581}{1000} \cdot k_{19} \cdot \left(\left(-1\right) + \exp\left(\left(k_{18} + \left(-x_{6}\right)\right) \cdot 1 / k_{18}\right)\right), x_{6} < k_{18}, 0) + \operatorname{piecewise}(k_{15} \cdot \exp\left(-\left(t + \left(-k_{16}\right)\right) \cdot 1 / k_{17}\right), t > k_{16}, 0)\right) \cdot x_{7}\right) / k_{26}\\ \frac{dx_{7}}{dt} = \left(1 \cdot k_{26} \cdot \left(\operatorname{piecewise}(\frac{581}{1000} \cdot k_{3} \cdot \left(\left(-1\right) + \exp\left(\left(k_{2} + \left(-x_{7}\right)\right) \cdot 1 / k_{2}\right)\right), x_{7} < k_{2}, 0) + \operatorname{piecewise}(k_{4} \cdot \exp\left(-\left(t + \left(-k_{5}\right)\right) \cdot 1 / k_{6}\right), t > k_{5}, 0)\right) \cdot x_{3} + -1 \cdot k_{26} \cdot \left(\operatorname{piecewise}(\frac{581}{1000} \cdot k_{19} \cdot \left(\left(-1\right) + \exp\left(\left(k_{18} + \left(-x_{6}\right)\right) \cdot 1 / k_{18}\right)\right), x_{6} < k_{18}, 0) + \operatorname{piecewise}(k_{15} \cdot \exp\left(-\left(t + \left(-k_{16}\right)\right) \cdot 1 / k_{17}\right), t > k_{16}, 0)\right) \cdot x_{7}\right) / k_{26}\\ \frac{dx_{8}}{dt} = \left(1 \cdot k_{30} \cdot x_{6} \cdot x_{12} \cdot k_{26} + 1 \cdot k_{33} \cdot x_{12} \cdot x_{1} \cdot k_{26}\right) / k_{26}\\ \frac{dx_{9}}{dt} = 0\\ \frac{dx_{10}}{dt} = 0\\ \frac{dx_{11}}{dt} = -1 \cdot k_{26} \cdot \left(k_{31} \cdot x_{11} \cdot k_{36} \cdot \operatorname{piecewise}(\exp\left(-\left(t + \left(-k_{9}\right)\right) \cdot 1 / k_{10}\right), t > k_{9}, 0) + \left(-k_{32} \cdot x_{12}\right)\right) / k_{26}\\ \frac{dx_{12}}{dt} = 1 \cdot k_{26} \cdot \left(k_{31} \cdot x_{11} \cdot k_{36} \cdot \operatorname{piecewise}(\exp\left(-\left(t + \left(-k_{9}\right)\right) \cdot 1 / k_{10}\right), t > k_{9}, 0) + \left(-k_{32} \cdot x_{12}\right)\right) / k_{26}\\ \frac{dx_{13}}{dt} = \left(1 \cdot k_{30} \cdot x_{6} \cdot x_{12} \cdot k_{26} + 1 \cdot k_{33} \cdot x_{12} \cdot x_{1} \cdot k_{26} + -1 \cdot k_{27} \cdot k_{35} \cdot \left(\frac{166112956810631}{100000000000000000} \cdot x_{13} + \left(-k_{34}\right)\right) \cdot 1 \cdot 1 / k_{1} + -1 \cdot k_{27} \cdot \left(k_{22} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{13} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{2} + \left(-k_{22} \cdot k_{23} \cdot \frac{166112956810631}{100000000000000000} \cdot x_{5}\right)\right) \cdot 1 \cdot 1 / k_{1}\right) / k_{27}