\frac{dx_{1}}{dt} = \left(1 \cdot k_{1} \cdot k_{2} + -1 \cdot x_{8} \cdot k_{3} / \left(1 + k_{4} / k_{12}\right) \cdot x_{1} / \left(x_{1} + k_{5} \cdot \left(1 + k_{11} / k_{6}\right) / \left(1 + k_{4} / k_{12}\right)\right) + -1 \cdot x_{9} \cdot \left(\frac{59}{10} \cdot 10^{-4} + \frac{31}{500} \cdot x_{7}^{\frac{29}{10}} / \left(32^{\frac{29}{10}} + x_{7}^{\frac{29}{10}}\right)\right) \cdot x_{1} / \left(1 + k_{11} / k_{7}\right)\right) / k_{1}\\
\frac{dx_{2}}{dt} = 0\\
\frac{dx_{3}}{dt} = 0\\
\frac{dx_{4}}{dt} = 0\\
\frac{dx_{5}}{dt} = 0\\
\frac{dx_{6}}{dt} = 0\\
\frac{dx_{7}}{dt} = 0 / k_{1}\\
\frac{dx_{8}}{dt} = 0 / k_{1}\\
\frac{dx_{9}}{dt} = 0 / k_{1}