\frac{dx_{1}}{dt} = \left(1 \cdot k_{26} \cdot \left(\frac{7}{2} - x_{1}\right) \cdot k_{25} + -1 \cdot k_{26} \cdot k_{1} \cdot x_{1} \cdot x_{4} / \left(\left(k_{2} + x_{4}\right) \cdot \left(k_{3} + x_{1}\right)\right) + -1 \cdot k_{26} \cdot k_{4} \cdot x_{1} \cdot x_{5}^{2} / \left(\left(k_{5} \cdot \left(1 + k_{6} \cdot x_{1} / x_{3}^{2}\right) + x_{5}^{2}\right) \cdot \left(k_{7} + x_{1}\right)\right) + 1 \cdot k_{26} \cdot \left(k_{13} \cdot x_{10} \cdot x_{2} - k_{14} \cdot x_{11} \cdot x_{1}\right) + 1 \cdot k_{26} \cdot k_{15} \cdot x_{2} \cdot x_{11} / \left(\left(k_{16} + x_{11}\right) \cdot \left(k_{17} + x_{2}\right)\right) + -1 \cdot k_{26} \cdot \left(k_{22} \cdot x_{3} \cdot x_{1} - k_{23} \cdot x_{2}^{2}\right)\right) / k_{26}\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{26} \cdot \left(\frac{11}{10} - x_{2}\right) \cdot k_{25} + 1 \cdot k_{26} \cdot k_{1} \cdot x_{1} \cdot x_{4} / \left(\left(k_{2} + x_{4}\right) \cdot \left(k_{3} + x_{1}\right)\right) + 1 \cdot k_{26} \cdot k_{4} \cdot x_{1} \cdot x_{5}^{2} / \left(\left(k_{5} \cdot \left(1 + k_{6} \cdot x_{1} / x_{3}^{2}\right) + x_{5}^{2}\right) \cdot \left(k_{7} + x_{1}\right)\right) + -1 \cdot k_{26} \cdot \left(k_{13} \cdot x_{10} \cdot x_{2} - k_{14} \cdot x_{11} \cdot x_{1}\right) + -1 \cdot k_{26} \cdot k_{15} \cdot x_{2} \cdot x_{11} / \left(\left(k_{16} + x_{11}\right) \cdot \left(k_{17} + x_{2}\right)\right) + 2 \cdot k_{26} \cdot \left(k_{22} \cdot x_{3} \cdot x_{1} - k_{23} \cdot x_{2}^{2}\right)\right) / k_{26}\\ \frac{dx_{3}}{dt} = \left(-1 \cdot k_{26} \cdot x_{3} \cdot k_{25} + -1 \cdot k_{26} \cdot \left(k_{22} \cdot x_{3} \cdot x_{1} - k_{23} \cdot x_{2}^{2}\right)\right) / k_{26}\\ \frac{dx_{4}}{dt} = \left(1 \cdot k_{26} \cdot \left(50 - x_{4}\right) \cdot k_{25} + -1 \cdot k_{26} \cdot k_{1} \cdot x_{1} \cdot x_{4} / \left(\left(k_{2} + x_{4}\right) \cdot \left(k_{3} + x_{1}\right)\right)\right) / k_{26}\\ \frac{dx_{5}}{dt} = \left(-1 \cdot k_{26} \cdot x_{5} \cdot k_{25} + 1 \cdot k_{26} \cdot k_{1} \cdot x_{1} \cdot x_{4} / \left(\left(k_{2} + x_{4}\right) \cdot \left(k_{3} + x_{1}\right)\right) + -1 \cdot k_{26} \cdot k_{4} \cdot x_{1} \cdot x_{5}^{2} / \left(\left(k_{5} \cdot \left(1 + k_{6} \cdot x_{1} / x_{3}^{2}\right) + x_{5}^{2}\right) \cdot \left(k_{7} + x_{1}\right)\right) + -1 \cdot k_{26} \cdot k_{24} \cdot x_{5}\right) / k_{26}\\ \frac{dx_{6}}{dt} = \left(-1 \cdot k_{26} \cdot x_{6} \cdot k_{25} + 1 \cdot k_{26} \cdot k_{4} \cdot x_{1} \cdot x_{5}^{2} / \left(\left(k_{5} \cdot \left(1 + k_{6} \cdot x_{1} / x_{3}^{2}\right) + x_{5}^{2}\right) \cdot \left(k_{7} + x_{1}\right)\right) + -1 \cdot k_{26} \cdot \left(k_{8} \cdot x_{6} - k_{9} \cdot x_{7}^{2}\right)\right) / k_{26}\\ \frac{dx_{7}}{dt} = \left(-1 \cdot k_{26} \cdot x_{7} \cdot k_{25} + 2 \cdot k_{26} \cdot \left(k_{8} \cdot x_{6} - k_{9} \cdot x_{7}^{2}\right) + -1 \cdot k_{26} \cdot k_{10} \cdot x_{8} \cdot x_{7} / \left(\left(k_{11} + x_{7}\right) \cdot \left(k_{12} + x_{8}\right)\right)\right) / k_{26}\\ \frac{dx_{8}}{dt} = \left(1 \cdot k_{26} \cdot \left(4 - x_{8}\right) \cdot k_{25} + -1 \cdot k_{26} \cdot k_{10} \cdot x_{8} \cdot x_{7} / \left(\left(k_{11} + x_{7}\right) \cdot \left(k_{12} + x_{8}\right)\right) + 1 \cdot k_{26} \cdot \left(k_{20} \cdot x_{9} \cdot x_{13} - k_{21} \cdot x_{8} \cdot x_{14}\right)\right) / k_{26}\\ \frac{dx_{9}}{dt} = \left(1 \cdot k_{26} \cdot \left(\frac{6}{25} - x_{9}\right) \cdot k_{25} + 1 \cdot k_{26} \cdot k_{10} \cdot x_{8} \cdot x_{7} / \left(\left(k_{11} + x_{7}\right) \cdot \left(k_{12} + x_{8}\right)\right) + -1 \cdot k_{26} \cdot \left(k_{20} \cdot x_{9} \cdot x_{13} - k_{21} \cdot x_{8} \cdot x_{14}\right)\right) / k_{26}\\ \frac{dx_{10}}{dt} = \left(-1 \cdot k_{26} \cdot x_{10} \cdot k_{25} + 1 \cdot k_{26} \cdot k_{10} \cdot x_{8} \cdot x_{7} / \left(\left(k_{11} + x_{7}\right) \cdot \left(k_{12} + x_{8}\right)\right) + -1 \cdot k_{26} \cdot \left(k_{13} \cdot x_{10} \cdot x_{2} - k_{14} \cdot x_{11} \cdot x_{1}\right)\right) / k_{26}\\ \frac{dx_{11}}{dt} = \left(-1 \cdot k_{26} \cdot x_{11} \cdot k_{25} + 1 \cdot k_{26} \cdot \left(k_{13} \cdot x_{10} \cdot x_{2} - k_{14} \cdot x_{11} \cdot x_{1}\right) + -1 \cdot k_{26} \cdot k_{15} \cdot x_{2} \cdot x_{11} / \left(\left(k_{16} + x_{11}\right) \cdot \left(k_{17} + x_{2}\right)\right)\right) / k_{26}\\ \frac{dx_{12}}{dt} = \left(-1 \cdot k_{26} \cdot x_{12} \cdot k_{25} + 1 \cdot k_{26} \cdot k_{15} \cdot x_{2} \cdot x_{11} / \left(\left(k_{16} + x_{11}\right) \cdot \left(k_{17} + x_{2}\right)\right) + -1 \cdot k_{26} \cdot k_{18} \cdot x_{12} / \left(k_{19} + x_{12}\right)\right) / k_{26}\\ \frac{dx_{13}}{dt} = \left(-1 \cdot k_{26} \cdot x_{13} \cdot k_{25} + 1 \cdot k_{26} \cdot k_{18} \cdot x_{12} / \left(k_{19} + x_{12}\right) + -1 \cdot k_{26} \cdot \left(k_{20} \cdot x_{9} \cdot x_{13} - k_{21} \cdot x_{8} \cdot x_{14}\right)\right) / k_{26}\\ \frac{dx_{14}}{dt} = \left(-1 \cdot k_{26} \cdot x_{14} \cdot k_{25} + 1 \cdot k_{26} \cdot \left(k_{20} \cdot x_{9} \cdot x_{13} - k_{21} \cdot x_{8} \cdot x_{14}\right)\right) / k_{26}\\ \frac{dx_{15}}{dt} = \left(-1 \cdot k_{26} \cdot x_{15} \cdot k_{25} + 1 \cdot k_{26} \cdot k_{24} \cdot x_{5}\right) / k_{26}