\frac{dx_{1}}{dt} = 0\\ \frac{dx_{2}}{dt} = \left(1 \cdot k_{3} \cdot k_{4} / \left(1 + x_{3} \cdot \left(1 - 2 / \left(1 + 1 + 8 \cdot k_{6} \cdot x_{3}^{\frac{1}{2}}\right)\right) / \left(2 \cdot k_{5}\right)^{2}\right) + -1 \cdot k_{8} \cdot x_{2} \cdot k_{3}\right) / k_{3}\\ \frac{dx_{3}}{dt} = \left(1 \cdot k_{7} \cdot x_{2} \cdot k_{3} + -1 \cdot k_{9} \cdot x_{3} \cdot k_{3} + -1 \cdot k_{3} \cdot \left(k_{10} \cdot x_{3} \cdot 2 / \left(1 + 1 + 8 \cdot k_{13} \cdot x_{3}^{\frac{1}{2}}\right) + k_{11} \cdot x_{3}\right) / \left(k_{12} + x_{3}\right)\right) / k_{3}