\frac{dx_{1}}{dt} = \left(-1 \cdot k_{10} \cdot k_{1} \cdot x_{4} \cdot x_{1} / k_{2} / \left(1 + x_{1} / k_{2} + x_{2} / k_{4}\right) + 1 \cdot k_{10} \cdot k_{7} \cdot x_{5} \cdot x_{2} / k_{8} / \left(1 + x_{3} / k_{6} + x_{2} / k_{8} + x_{1} / k_{9}\right)\right) / k_{10}\\
\frac{dx_{2}}{dt} = \left(1 \cdot k_{10} \cdot k_{1} \cdot x_{4} \cdot x_{1} / k_{2} / \left(1 + x_{1} / k_{2} + x_{2} / k_{4}\right) + -1 \cdot k_{10} \cdot k_{3} \cdot x_{4} \cdot x_{2} / k_{4} / \left(1 + x_{1} / k_{2} + x_{2} / k_{4}\right) + 1 \cdot k_{10} \cdot k_{5} \cdot x_{5} \cdot x_{3} / k_{6} / \left(1 + x_{3} / k_{6} + x_{2} / k_{8} + x_{1} / k_{9}\right) + -1 \cdot k_{10} \cdot k_{7} \cdot x_{5} \cdot x_{2} / k_{8} / \left(1 + x_{3} / k_{6} + x_{2} / k_{8} + x_{1} / k_{9}\right)\right) / k_{10}\\
\frac{dx_{3}}{dt} = \left(1 \cdot k_{10} \cdot k_{3} \cdot x_{4} \cdot x_{2} / k_{4} / \left(1 + x_{1} / k_{2} + x_{2} / k_{4}\right) + -1 \cdot k_{10} \cdot k_{5} \cdot x_{5} \cdot x_{3} / k_{6} / \left(1 + x_{3} / k_{6} + x_{2} / k_{8} + x_{1} / k_{9}\right)\right) / k_{10}\\
\frac{dx_{4}}{dt} = 0 / k_{10}\\
\frac{dx_{5}}{dt} = 0 / k_{10}