\frac{dx_{1}}{dt} = \left(-1 \cdot k_{2} \cdot \left(k_{3} \cdot x_{1} \cdot x_{3} - k_{4} \cdot x_{13}\right) + 1 \cdot k_{2} \cdot k_{5} \cdot x_{13}\right) / k_{2}\\ \frac{dx_{2}}{dt} = \left(-1 \cdot k_{2} \cdot \left(k_{6} \cdot x_{2} \cdot x_{4} - k_{7} \cdot x_{14}\right) + 1 \cdot k_{2} \cdot k_{8} \cdot x_{14}\right) / k_{2}\\ \frac{dx_{3}}{dt} = \left(-1 \cdot k_{2} \cdot \left(k_{3} \cdot x_{1} \cdot x_{3} - k_{4} \cdot x_{13}\right) + 1 \cdot k_{2} \cdot k_{8} \cdot x_{14}\right) / k_{2}\\ \frac{dx_{4}}{dt} = \left(1 \cdot k_{2} \cdot k_{5} \cdot x_{13} + -1 \cdot k_{2} \cdot \left(k_{6} \cdot x_{2} \cdot x_{4} - k_{7} \cdot x_{14}\right) + -1 \cdot k_{2} \cdot \left(k_{9} \cdot x_{5} \cdot x_{4} - k_{10} \cdot x_{15}\right) + 1 \cdot k_{2} \cdot k_{11} \cdot x_{15} + -1 \cdot k_{2} \cdot \left(k_{15} \cdot x_{6} \cdot x_{4} - k_{16} \cdot x_{16}\right) + 1 \cdot k_{2} \cdot k_{17} \cdot x_{16}\right) / k_{2}\\ \frac{dx_{5}}{dt} = \left(-1 \cdot k_{2} \cdot \left(k_{9} \cdot x_{5} \cdot x_{4} - k_{10} \cdot x_{15}\right) + 1 \cdot k_{2} \cdot k_{14} \cdot x_{20}\right) / k_{2}\\ \frac{dx_{6}}{dt} = \left(1 \cdot k_{2} \cdot k_{11} \cdot x_{15} + -1 \cdot k_{2} \cdot \left(k_{12} \cdot x_{6} \cdot x_{12} - k_{13} \cdot x_{20}\right) + -1 \cdot k_{2} \cdot \left(k_{15} \cdot x_{6} \cdot x_{4} - k_{16} \cdot x_{16}\right) + 1 \cdot k_{2} \cdot k_{20} \cdot x_{19}\right) / k_{2}\\ \frac{dx_{7}}{dt} = \left(1 \cdot k_{2} \cdot k_{17} \cdot x_{16} + -1 \cdot k_{2} \cdot \left(k_{18} \cdot x_{7} \cdot x_{12} - k_{19} \cdot x_{19}\right) + -1 \cdot k_{2} \cdot \left(k_{21} \cdot x_{8} \cdot x_{7} - k_{22} \cdot x_{17}\right) + 1 \cdot k_{2} \cdot k_{23} \cdot x_{17} + -1 \cdot k_{2} \cdot \left(k_{27} \cdot x_{9} \cdot x_{7} - k_{28} \cdot x_{18}\right) + 1 \cdot k_{2} \cdot k_{29} \cdot x_{18}\right) / k_{2}\\ \frac{dx_{8}}{dt} = \left(-1 \cdot k_{2} \cdot \left(k_{21} \cdot x_{8} \cdot x_{7} - k_{22} \cdot x_{17}\right) + 1 \cdot k_{2} \cdot k_{26} \cdot x_{22}\right) / k_{2}\\ \frac{dx_{9}}{dt} = \left(1 \cdot k_{2} \cdot k_{23} \cdot x_{17} + -1 \cdot k_{2} \cdot \left(k_{24} \cdot x_{9} \cdot x_{11} - k_{25} \cdot x_{22}\right) + -1 \cdot k_{2} \cdot \left(k_{27} \cdot x_{9} \cdot x_{7} - k_{28} \cdot x_{18}\right) + 1 \cdot k_{2} \cdot k_{32} \cdot x_{21}\right) / k_{2}\\ \frac{dx_{10}}{dt} = \left(1 \cdot k_{2} \cdot k_{29} \cdot x_{18} + -1 \cdot k_{2} \cdot \left(k_{30} \cdot x_{10} \cdot x_{11} - k_{31} \cdot x_{21}\right)\right) / k_{2}\\ \frac{dx_{11}}{dt} = \left(-1 \cdot k_{2} \cdot \left(k_{24} \cdot x_{9} \cdot x_{11} - k_{25} \cdot x_{22}\right) + 1 \cdot k_{2} \cdot k_{26} \cdot x_{22} + -1 \cdot k_{2} \cdot \left(k_{30} \cdot x_{10} \cdot x_{11} - k_{31} \cdot x_{21}\right) + 1 \cdot k_{2} \cdot k_{32} \cdot x_{21}\right) / k_{2}\\ \frac{dx_{12}}{dt} = \left(-1 \cdot k_{2} \cdot \left(k_{12} \cdot x_{6} \cdot x_{12} - k_{13} \cdot x_{20}\right) + 1 \cdot k_{2} \cdot k_{14} \cdot x_{20} + -1 \cdot k_{2} \cdot \left(k_{18} \cdot x_{7} \cdot x_{12} - k_{19} \cdot x_{19}\right) + 1 \cdot k_{2} \cdot k_{20} \cdot x_{19}\right) / k_{2}\\ \frac{dx_{13}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{3} \cdot x_{1} \cdot x_{3} - k_{4} \cdot x_{13}\right) + -1 \cdot k_{2} \cdot k_{5} \cdot x_{13}\right) / k_{2}\\ \frac{dx_{14}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{6} \cdot x_{2} \cdot x_{4} - k_{7} \cdot x_{14}\right) + -1 \cdot k_{2} \cdot k_{8} \cdot x_{14}\right) / k_{2}\\ \frac{dx_{15}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{9} \cdot x_{5} \cdot x_{4} - k_{10} \cdot x_{15}\right) + -1 \cdot k_{2} \cdot k_{11} \cdot x_{15}\right) / k_{2}\\ \frac{dx_{16}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{15} \cdot x_{6} \cdot x_{4} - k_{16} \cdot x_{16}\right) + -1 \cdot k_{2} \cdot k_{17} \cdot x_{16}\right) / k_{2}\\ \frac{dx_{17}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{21} \cdot x_{8} \cdot x_{7} - k_{22} \cdot x_{17}\right) + -1 \cdot k_{2} \cdot k_{23} \cdot x_{17}\right) / k_{2}\\ \frac{dx_{18}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{27} \cdot x_{9} \cdot x_{7} - k_{28} \cdot x_{18}\right) + -1 \cdot k_{2} \cdot k_{29} \cdot x_{18}\right) / k_{2}\\ \frac{dx_{19}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{18} \cdot x_{7} \cdot x_{12} - k_{19} \cdot x_{19}\right) + -1 \cdot k_{2} \cdot k_{20} \cdot x_{19}\right) / k_{2}\\ \frac{dx_{20}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{12} \cdot x_{6} \cdot x_{12} - k_{13} \cdot x_{20}\right) + -1 \cdot k_{2} \cdot k_{14} \cdot x_{20}\right) / k_{2}\\ \frac{dx_{21}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{30} \cdot x_{10} \cdot x_{11} - k_{31} \cdot x_{21}\right) + -1 \cdot k_{2} \cdot k_{32} \cdot x_{21}\right) / k_{2}\\ \frac{dx_{22}}{dt} = \left(1 \cdot k_{2} \cdot \left(k_{24} \cdot x_{9} \cdot x_{11} - k_{25} \cdot x_{22}\right) + -1 \cdot k_{2} \cdot k_{26} \cdot x_{22}\right) / k_{2}