x_{33} = k_{138} \cdot \exp\left(\left(-k_{72}\right) \cdot t\right)\\
x_{34} = k_{76} - k_{74} \cdot \left(x_{33} - k_{138} \cdot \exp\left(\left(-k_{77}\right) \cdot k_{138} \cdot t\right)\right)\\
x_{57} = x_{4} + x_{7} + x_{14} + x_{20} + x_{21}\\
x_{58} = x_{8} + x_{10} + x_{11} + x_{22} + x_{23} \cdot 0 + x_{36} \cdot 0 + x_{19} \cdot 0\\
x_{59} = x_{39} + x_{41} + x_{42}\\
x_{60} = 20 \cdot x_{12}\\
1 \cdot k_{139} \cdot x_{6} + 1 \cdot k_{139} \cdot x_{7} + 1 \cdot k_{139} \cdot x_{10} + 1 \cdot k_{139} \cdot x_{11} + 1 \cdot k_{139} \cdot x_{14} + 1 \cdot k_{139} \cdot x_{20} + 1 \cdot k_{139} \cdot x_{21} + 1 \cdot k_{139} \cdot x_{22} + 1 \cdot k_{139} \cdot x_{23} = k_{139} \cdot k_{141}\\
1 \cdot k_{139} \cdot x_{12} + 1 \cdot k_{139} \cdot x_{54} = k_{139} \cdot k_{142}\\
1 \cdot k_{139} \cdot x_{13} + 1 \cdot k_{139} \cdot x_{55} = k_{139} \cdot k_{143}\\
1 \cdot k_{139} \cdot x_{37} + 1 \cdot k_{139} \cdot x_{38} = k_{139} \cdot k_{144}