x_{9} = x_{7} \cdot k_{16} / \left(1 - k_{16}\right) \cdot \left(k_{4} + 1\right) / k_{4} / \left(1 + k_{16} / \left(1 - k_{16}\right) \cdot \left(k_{4} + 1\right) / k_{4}\right)\\
x_{10} = \left(k_{13} + 1\right) \cdot \left(k_{14} - x_{3}\right) - k_{13} \cdot x_{6}\\
x_{11} = \left(k_{13} + 1\right) \cdot x_{1} - k_{13} \cdot x_{13}\\
x_{12} = \left(k_{13} + 1\right) \cdot k_{15} - k_{13} \cdot x_{19}\\
x_{14} = \left(k_{13} + 1\right) \cdot x_{3} - k_{13} \cdot x_{8}\\
x_{15} = x_{14} - 2 \cdot x_{11} - x_{16}\\
x_{16} = \left(k_{13} + 1\right) \cdot x_{2} - k_{13} \cdot x_{17}\\
x_{18} = x_{19} - x_{17}\\
x_{20} = x_{8} - 2 \cdot x_{13} - x_{17}\\
x_{21} = x_{12} - x_{16}\\
x_{23} = x_{5} + x_{7} + x_{24} + x_{26}\\
x_{25} = x_{7} \cdot 1 / \left(1 + k_{16} / \left(1 - k_{16}\right) \cdot \left(k_{4} + 1\right) / k_{4}\right)