x_{2} = k_{2} \cdot x_{1} / \left(k_{2} + k_{1}\right)\\ x_{3} = k_{1} \cdot x_{1} / \left(k_{2} + k_{1}\right)\\ x_{5} = \left(1 + k_{8} + 2 \cdot k_{7} \cdot x_{4} - 1 + k_{8} + 2 \cdot k_{7} \cdot x_{4}^{2} - 8 \cdot k_{7} \cdot x_{4}^{\frac{1}{2}}\right) / 2\\ x_{7} = \left(k_{10} \cdot x_{4} + k_{11} \cdot x_{6}\right) / \left(1 + k_{10} \cdot x_{4} + k_{11} \cdot x_{6}\right) \cdot x_{17}\\ x_{12} = 1 - x_{11} - x_{13}\\ x_{15} = 1 - x_{14} - x_{16}